A multi-proxy record of changing environments from ca. 30000 to 9000 cal. a BP: Onepoto maar palaeolake, Auckland, New Zealand
We present a high-resolution record of lacustrine sedimentation spanning ca. 30000 to 9000 cal. a BP from Onepoto maar, northern North Island, New Zealand. The multi-proxy record of environmental change is constrained by tephrochronology and accelerator mass spectrometric 14C ages and provides evide...
Gespeichert in:
Veröffentlicht in: | Journal of quaternary science 2011-05, Vol.26 (4), p.389-401 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a high-resolution record of lacustrine sedimentation spanning ca. 30000 to 9000 cal. a BP from Onepoto maar, northern North Island, New Zealand. The multi-proxy record of environmental change is constrained by tephrochronology and accelerator mass spectrometric 14C ages and provides evidence for episodes of rapid environmental change during the Last Glacial Coldest Period (LGCP) and Last Glacial-Interglacial Transition (LGIT) from northern New Zealand. The multi-proxy palaeoenvironmental record from Onepoto indicates that the LGCP was cold, dry and windy in the Auckland region, with vegetation dominated by herb and grass in a beech forest mosaic between ca. 28500 and 18000 cal. a BP. The LGCP was accompanied by more frequent fires and influx of clastic sediment indicating increased erosion during the LGCP, with a mid-LGCP interstadial identified between ca. 25000 and 23000 cal. a BP. Rapid climate amelioration at ca. 18000 cal. a BP was accompanied by increased terrestrial biomass exemplified by the expansion of lowland podocarp forest, especially Dacrydium cupressinum. Increasing biomass production is reversed briefly by LGIT perturbations which are apparent in many of the proxies that span ca. 14000-10500 cal. a BP, suggesting generally increased wetness and higher in situ aquatic plant productivity with reduced terrestrial organic matter and terrigenous detrital influx. Furthermore, conditions at that time were probably warmer and frosts rare based on the increasing importance of Ascarina. The subsequent early Holocene is characterised by podocarp conifer forest and moist mild conditions. Postglacial sea-level rise breached the crater rim and deposited 36m of estuarine mud after ca. 9000 cal. a BP. |
---|---|
ISSN: | 1099-1417 |
DOI: | 10.1002/jqs.1463 |