Disruption of hydroecological equilibrium in southwest Amazon mediated by drought

The impacts of droughts on the Amazon ecosystem have been broadly discussed in recent years, but a comprehensive understanding of the consequences is still missing. In this study, we show evidence of a fragile hydrological equilibrium in the western Amazon. While drainage systems located near the eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2015-09, Vol.42 (18), p.7546-7553
Hauptverfasser: Maeda, Eduardo Eiji, Kim, Hyungjun, Aragão, Luiz E. O. C., Famiglietti, James S., Oki, Taikan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The impacts of droughts on the Amazon ecosystem have been broadly discussed in recent years, but a comprehensive understanding of the consequences is still missing. In this study, we show evidence of a fragile hydrological equilibrium in the western Amazon. While drainage systems located near the equator and the western Amazon do not show water deficit in years with average climate conditions, this equilibrium can be broken during drought events. More importantly, we show that this effect is persistent, taking years until the normal hydrological patterns are reestablished. We show clear links between persistent changes in forest canopy structure and changes in hydrological patterns, revealing physical evidence of hydrological mechanisms that may lead to permanent changes in parts of the Amazon ecosystem. If prospects of increasing drought frequency are confirmed, a change in the current hydroecological patterns in the western Amazon could take place in less than a decade. Key Points A fragile hydroecological equilibrium is observed in the western Amazon Drought events are linked to persistent disruptions on ecosystem functioning Permanent impacts on vegetation likely to occur in case of increasing drought frequency
ISSN:0094-8276
1944-8007
DOI:10.1002/2015GL065252