Fast image classification by boosting fuzzy classifiers

This paper presents a novel approach to visual objects classification based on generating simple fuzzy classifiers using local image features to distinguish between one known class and other classes. Boosting meta-learning is used to find the most representative local features. The proposed approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2016-01, Vol.327, p.175-182
Hauptverfasser: Korytkowski, Marcin, Rutkowski, Leszek, Scherer, Rafał
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel approach to visual objects classification based on generating simple fuzzy classifiers using local image features to distinguish between one known class and other classes. Boosting meta-learning is used to find the most representative local features. The proposed approach is tested on a state-of-the-art image dataset and compared with the bag-of-features image representation model combined with the Support Vector Machine classification. The novel method gives better classification accuracy and the time of learning and testing process is more than 30% shorter.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2015.08.030