Controlling blast wave generation in a shock tube for biological applications
The shock tube is a versatile apparatus used in a wide range of scientific research fields. In this case, we are developing a system to use with biological specimens. The process of diaphragm rupture is closely linked to the shock wave generated. Experiments were performed on an air-driven shock tub...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2014-05, Vol.500 (14), p.142025-6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The shock tube is a versatile apparatus used in a wide range of scientific research fields. In this case, we are developing a system to use with biological specimens. The process of diaphragm rupture is closely linked to the shock wave generated. Experiments were performed on an air-driven shock tube with Mylar® and aluminium diaphragms of various thicknesses, to control the output. The evolution of shock pressure was measured and the diaphragm rupture process investigated. Single-diaphragm and double-diaphragm configurations were employed, as were open or closed tube configurations. The arrangement was designed to enable high-speed photography and pressure measurements. Overall, results are highly reproducible, and show that the double-diaphragm system enables a more controllable diaphragm burst pressure. The diaphragm burst pressure was linearly related to its thickness within the range studied. The observed relationship between the diaphragm burst pressure and the generated shock pressure presents a noticeable difference compared to the theoretical ideal gas description. Furthermore, the duration of the primary shock decreased proportionally with the length of the high-pressure charging volume. Computational modelling of the diaphragm breakage process was carried out using the ANSYS software package. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/500/14/142025 |