The effect of computer science on physics learning in a computational science environment
College and high-school students face many difficulties when dealing with physics formulas, such as a lack of understanding of their components or of the physical relationships between the two sides of a formula. To overcome these difficulties some instructors suggest combining simulations' des...
Gespeichert in:
Veröffentlicht in: | Computers and education 2015-09, Vol.87, p.10-23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | College and high-school students face many difficulties when dealing with physics formulas, such as a lack of understanding of their components or of the physical relationships between the two sides of a formula. To overcome these difficulties some instructors suggest combining simulations' design while learning physics, claiming that the programming process forces the students to understand the physical mechanism activating the simulation. This study took place in a computational-science course where high-school students programmed simulations of physical systems, thus combining computer science (CS) and mathematics with physics learning. The study explored the ways in which CS affected the students' conceptual understanding of the physics behind formulas. The major part of the analysis process was qualitative, although some quantitative analysis was applied as well. Findings revealed that a great amount of the time was invested by the students on representing their physics knowledge in terms of computer science. Three knowledge domains were found to be applied: structural, procedural and systemic. A fourth domain which enabled reflection on the knowledge was found as well, the domain of execution. Each of the domains was found to promote the emergence of knowledge integration processes (Linn & Eylon, 2006, 2011), thus promoting students' physics conceptual understanding. Based on these findings, some instructional implications are discussed. |
---|---|
ISSN: | 0360-1315 |
DOI: | 10.1016/j.compedu.2015.03.013 |