Tensor completion using total variation and low-rank matrix factorization

In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2016-01, Vol.326, p.243-257
Hauptverfasser: Ji, Teng-Yu, Huang, Ting-Zhu, Zhao, Xi-Le, Ma, Tian-Hui, Liu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue
container_start_page 243
container_title Information sciences
container_volume 326
creator Ji, Teng-Yu
Huang, Ting-Zhu
Zhao, Xi-Le
Ma, Tian-Hui
Liu, Gang
description In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoretically show that under some mild conditions, the algorithm converges to the coordinatewise minimizers. Experimental results are reported to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme.
doi_str_mv 10.1016/j.ins.2015.07.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762110042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025515005575</els_id><sourcerecordid>1762110042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e5af8a387bb2e9c3374292413c6e15270588a5ac6864f7d7abe47b55628a172e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAeyyZJNgO7GdiBWqeFSqxKasrYkzQS6pXWy3PL6etGXNaqTRPVe6h5BrRgtGmbxdFdbFglMmCqoKWjUnZMJqxXPJG3ZKJpRymlMuxDm5iHFFKa2UlBMyX6KLPmTGrzcDJutdto3WvWXJJxiyHQQLhy-4Lhv8Zx7AvWdrSMF-ZT2Y5IP9OSQuyVkPQ8Srvzslr48Py9lzvnh5ms_uF7kpG5lyFNDXUNaqbTk2pixVxRtesdJIZIIrKuoaBBhZy6pXnYIWK9UKIXkNTHEsp-Tm2LsJ_mOLMem1jQaHARz6bdRMSc7YuI-PUXaMmuBjDNjrTbBrCN-aUb3Xpld61Kb32jRVetQ2MndHBscNO4tBR2PRGexsQJN05-0_9C-fbXXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762110042</pqid></control><display><type>article</type><title>Tensor completion using total variation and low-rank matrix factorization</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ji, Teng-Yu ; Huang, Ting-Zhu ; Zhao, Xi-Le ; Ma, Tian-Hui ; Liu, Gang</creator><creatorcontrib>Ji, Teng-Yu ; Huang, Ting-Zhu ; Zhao, Xi-Le ; Ma, Tian-Hui ; Liu, Gang</creatorcontrib><description>In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoretically show that under some mild conditions, the algorithm converges to the coordinatewise minimizers. Experimental results are reported to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2015.07.049</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Block coordinate descent ; Blocking ; Factorization ; Low-rank matrix factorization ; Mathematical analysis ; Mathematical models ; Optimization ; Regularization ; Tensor completion ; Tensors ; Total variation</subject><ispartof>Information sciences, 2016-01, Vol.326, p.243-257</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e5af8a387bb2e9c3374292413c6e15270588a5ac6864f7d7abe47b55628a172e3</citedby><cites>FETCH-LOGICAL-c396t-e5af8a387bb2e9c3374292413c6e15270588a5ac6864f7d7abe47b55628a172e3</cites><orcidid>0000-0001-7766-230X ; 0000-0003-2848-8477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2015.07.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ji, Teng-Yu</creatorcontrib><creatorcontrib>Huang, Ting-Zhu</creatorcontrib><creatorcontrib>Zhao, Xi-Le</creatorcontrib><creatorcontrib>Ma, Tian-Hui</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><title>Tensor completion using total variation and low-rank matrix factorization</title><title>Information sciences</title><description>In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoretically show that under some mild conditions, the algorithm converges to the coordinatewise minimizers. Experimental results are reported to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme.</description><subject>Algorithms</subject><subject>Block coordinate descent</subject><subject>Blocking</subject><subject>Factorization</subject><subject>Low-rank matrix factorization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Tensor completion</subject><subject>Tensors</subject><subject>Total variation</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAeyyZJNgO7GdiBWqeFSqxKasrYkzQS6pXWy3PL6etGXNaqTRPVe6h5BrRgtGmbxdFdbFglMmCqoKWjUnZMJqxXPJG3ZKJpRymlMuxDm5iHFFKa2UlBMyX6KLPmTGrzcDJutdto3WvWXJJxiyHQQLhy-4Lhv8Zx7AvWdrSMF-ZT2Y5IP9OSQuyVkPQ8Srvzslr48Py9lzvnh5ms_uF7kpG5lyFNDXUNaqbTk2pixVxRtesdJIZIIrKuoaBBhZy6pXnYIWK9UKIXkNTHEsp-Tm2LsJ_mOLMem1jQaHARz6bdRMSc7YuI-PUXaMmuBjDNjrTbBrCN-aUb3Xpld61Kb32jRVetQ2MndHBscNO4tBR2PRGexsQJN05-0_9C-fbXXE</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Ji, Teng-Yu</creator><creator>Huang, Ting-Zhu</creator><creator>Zhao, Xi-Le</creator><creator>Ma, Tian-Hui</creator><creator>Liu, Gang</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7766-230X</orcidid><orcidid>https://orcid.org/0000-0003-2848-8477</orcidid></search><sort><creationdate>20160101</creationdate><title>Tensor completion using total variation and low-rank matrix factorization</title><author>Ji, Teng-Yu ; Huang, Ting-Zhu ; Zhao, Xi-Le ; Ma, Tian-Hui ; Liu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e5af8a387bb2e9c3374292413c6e15270588a5ac6864f7d7abe47b55628a172e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Block coordinate descent</topic><topic>Blocking</topic><topic>Factorization</topic><topic>Low-rank matrix factorization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Tensor completion</topic><topic>Tensors</topic><topic>Total variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Teng-Yu</creatorcontrib><creatorcontrib>Huang, Ting-Zhu</creatorcontrib><creatorcontrib>Zhao, Xi-Le</creatorcontrib><creatorcontrib>Ma, Tian-Hui</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Teng-Yu</au><au>Huang, Ting-Zhu</au><au>Zhao, Xi-Le</au><au>Ma, Tian-Hui</au><au>Liu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor completion using total variation and low-rank matrix factorization</atitle><jtitle>Information sciences</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>326</volume><spage>243</spage><epage>257</epage><pages>243-257</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoretically show that under some mild conditions, the algorithm converges to the coordinatewise minimizers. Experimental results are reported to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2015.07.049</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7766-230X</orcidid><orcidid>https://orcid.org/0000-0003-2848-8477</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2016-01, Vol.326, p.243-257
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1762110042
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Block coordinate descent
Blocking
Factorization
Low-rank matrix factorization
Mathematical analysis
Mathematical models
Optimization
Regularization
Tensor completion
Tensors
Total variation
title Tensor completion using total variation and low-rank matrix factorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20completion%20using%20total%20variation%20and%20low-rank%20matrix%20factorization&rft.jtitle=Information%20sciences&rft.au=Ji,%20Teng-Yu&rft.date=2016-01-01&rft.volume=326&rft.spage=243&rft.epage=257&rft.pages=243-257&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2015.07.049&rft_dat=%3Cproquest_cross%3E1762110042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762110042&rft_id=info:pmid/&rft_els_id=S0020025515005575&rfr_iscdi=true