Tensor completion using total variation and low-rank matrix factorization

In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2016-01, Vol.326, p.243-257
Hauptverfasser: Ji, Teng-Yu, Huang, Ting-Zhu, Zhao, Xi-Le, Ma, Tian-Hui, Liu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoretically show that under some mild conditions, the algorithm converges to the coordinatewise minimizers. Experimental results are reported to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2015.07.049