High activity and wide temperature window of Fe-Cu-SSZ-13 in the selective catalytic reduction of NO with ammonia
Fe‐Cu‐SSZ‐13 catalysts were prepared by aqueous solution ion‐exchange method based on the one‐pot synthesized Cu‐SSZ‐13. The catalysts were applied to the selective catalytic reduction (SCR) of NO with NH3 and characterized by the means of XRD, UV‐Vis, EPR, XPS, NH3‐TPD, and so on. The selected Fe‐C...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2015-11, Vol.61 (11), p.3825-3837 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fe‐Cu‐SSZ‐13 catalysts were prepared by aqueous solution ion‐exchange method based on the one‐pot synthesized Cu‐SSZ‐13. The catalysts were applied to the selective catalytic reduction (SCR) of NO with NH3 and characterized by the means of XRD, UV‐Vis, EPR, XPS, NH3‐TPD, and so on. The selected Fe‐Cu‐SSZ‐13‐1 catalyst exhibited the high NO conversion (>90%) in the wide temperature range (225–625°C), which also showed good N2 selectivity and excellent hydrothermal stability. The results of XPS showed that the Cu and Fe species were in the internal and outer parts of the SSZ‐13 crystals, respectively. The results of UV‐Vis and EPR indicated that the monomeric Cu2+ ions coordinated to three oxygen atoms on the six‐ring sites and Fe monomers are the real active species in the NH3‐SCR reaction. Furthermore, the influence of intracrystalline mass‐transfer limitations on the Fe‐Cu‐SSZ‐13 catalysts is related to the location of active species in the SSZ‐13 crystals. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3825–3837, 2015 |
---|---|
ISSN: | 0001-1541 1547-5905 |
DOI: | 10.1002/aic.14923 |