From laminar to turbulent detonations in energetic materials from molecular dynamics simulations

The structure of a self-sustained detonation wave in solid energetic materials was studied using molecular dynamics simulations. Energetic materials are described by the AB model with parameters modified to investigate the detonation-wave structures. It is found that depending on the reaction barrie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2014-01, Vol.500 (17), p.172005-6
Hauptverfasser: Zhakhovsky, Vasily V, Budzevich, Mikalai M, Landerville, Aaron C, Oleynik, Ivan I, White, Carter T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure of a self-sustained detonation wave in solid energetic materials was studied using molecular dynamics simulations. Energetic materials are described by the AB model with parameters modified to investigate the detonation-wave structures. It is found that depending on the reaction barrier for the exothermic reactions driving the detonation and the boundary conditions of the sample this simple model exhibits a detonation structure that can range from a planar to a complex turbulent detonation. The different regimes of condensed-phase detonation seen are similar to those observed in gases and diluted liquids.
ISSN:1742-6596
1742-6588
1742-6596
DOI:10.1088/1742-6596/500/17/172005