Multiphysics finite element model of a frequency-amplifying piezoelectric energy harvester with impact coupling for low-frequency vibrations

This paper presents experimentally-verified multiphysics finite element model of a wideband vibration energy harvester with impact coupling, which operates on the principle of frequency up-conversion: under low-frequency harmonic base excitation a cantilever-type resonator (with resonant frequency o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2013-01, Vol.476 (1), p.12090-5
Hauptverfasser: Dauksevicius, R, Briand, D, Quintero, A Vásquez, Lockhart, R A, Janphuang, P, de Rooij, N F, Ostasevicius, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents experimentally-verified multiphysics finite element model of a wideband vibration energy harvester with impact coupling, which operates on the principle of frequency up-conversion: under low-frequency harmonic base excitation a cantilever-type resonator (with resonant frequency of 18.8 Hz) impacts a high-frequency piezoelectric cantilever, which starts freely vibrate at its resonant frequency of 374 Hz. Such input frequency amplification enables efficient power generation under low-frequency ambient excitations. The model was implemented in COMSOL and the contact between the cantilevers was formulated by using a nonlinear viscoelastic model. Reported results of dynamical and electrical testing of the fabricated vibration energy harvester confirm the accuracy of the model as well as reveal some operational characteristics of the device under varying impact and excitation conditions.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/476/1/012090