Percolation on random triangulations and stable looptrees

We study site percolation on Angel and Schramm’s uniform infinite planar triangulation. We compute several critical and near-critical exponents, and describe the scaling limit of the boundary of large percolation clusters in all regimes (subcritical, critical and supercritical). We prove in particul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2015-10, Vol.163 (1-2), p.303-337
Hauptverfasser: Curien, Nicolas, Kortchemski, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study site percolation on Angel and Schramm’s uniform infinite planar triangulation. We compute several critical and near-critical exponents, and describe the scaling limit of the boundary of large percolation clusters in all regimes (subcritical, critical and supercritical). We prove in particular that the scaling limit of the boundary of large critical percolation clusters is the random stable looptree of index 3 = 2 , which was introduced in Curien and Kortchemski (Random stable looptrees. arXiv:1304.1044 , 2014 ). We also give a conjecture linking looptrees of any index α ∈ ( 1 , 2 ) with scaling limits of cluster boundaries in random triangulations decorated with O ( N ) models.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-014-0593-5