Some identities involving exponential functions and Stirling numbers and applications
Guo and Qi (2013) posed a problem asking to determine the coefficients ak,i−1 for 1≤i≤k such that 1/(1−e−t)k=1+∑i=1kak,i−1(1/(et−1))(i−1). The authors answer this question alternatively by Faà di Bruno’s formula, unify the eight identities due to Guo and Qi to two identities involving two parameters...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2014-04, Vol.260, p.201-207 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Guo and Qi (2013) posed a problem asking to determine the coefficients ak,i−1 for 1≤i≤k such that 1/(1−e−t)k=1+∑i=1kak,i−1(1/(et−1))(i−1). The authors answer this question alternatively by Faà di Bruno’s formula, unify the eight identities due to Guo and Qi to two identities involving two parameters, and apply them to obtain an explicit expression for the Apostol–Bernoulli numbers and the Fubini numbers, respectively. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2013.09.077 |