A research survey: review of AI solution strategies of job shop scheduling problem

This paper focus on artificial intelligence approaches to NP-hard job shop scheduling (JSS) problem. In the literature successful approaches of artificial intelligence techniques such as neural network, genetic algorithm, multi agent systems, simulating annealing, bee colony optimization, ant colony...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2015-10, Vol.26 (5), p.961-973
Hauptverfasser: Çaliş, Banu, Bulkan, Serol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focus on artificial intelligence approaches to NP-hard job shop scheduling (JSS) problem. In the literature successful approaches of artificial intelligence techniques such as neural network, genetic algorithm, multi agent systems, simulating annealing, bee colony optimization, ant colony optimization, particle swarm algorithm, etc. are presented as solution approaches to job shop scheduling problem. These studies are surveyed and their successes are listed in this article.
ISSN:0956-5515
1572-8145
DOI:10.1007/s10845-013-0837-8