Global blow-up for a semilinear heat equation on a subspace
We study the asymptotic behaviour as t → T– , near a finite blow-up time T > 0, of decreasing-in-x solutions to the following semilinear heat equation with a non-local term: with Neumann boundary conditions and strictly decreasing initial function u0(x) with zero mass. We prove sharp estimates fo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2015-10, Vol.145 (5), p.893-923 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the asymptotic behaviour as t → T–
, near a finite blow-up time T > 0, of decreasing-in-x solutions to the following semilinear heat equation with a non-local term:
with Neumann boundary conditions and strictly decreasing initial function u0(x) with zero mass. We prove sharp estimates for u(x, t) as t → T–
, revealing a non-uniform global blow-up:
uniformly on any compact set [δ, 1], δ ∈ (0, 1). |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/S0308210515000256 |