Global blow-up for a semilinear heat equation on a subspace

We study the asymptotic behaviour as t → T– , near a finite blow-up time T > 0, of decreasing-in-x solutions to the following semilinear heat equation with a non-local term: with Neumann boundary conditions and strictly decreasing initial function u0(x) with zero mass. We prove sharp estimates fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2015-10, Vol.145 (5), p.893-923
Hauptverfasser: Budd, C. J., Dold, J. W., Galaktionov, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic behaviour as t → T– , near a finite blow-up time T > 0, of decreasing-in-x solutions to the following semilinear heat equation with a non-local term: with Neumann boundary conditions and strictly decreasing initial function u0(x) with zero mass. We prove sharp estimates for u(x, t) as t → T– , revealing a non-uniform global blow-up: uniformly on any compact set [δ, 1], δ ∈ (0, 1).
ISSN:0308-2105
1473-7124
DOI:10.1017/S0308210515000256