The Fresnel-Weyl complementary transformation

Based on the newly developed coherent-entangled state representation,we propose the so-called Fresnel-Weyl complementary transformation operator.The new operator plays the roles of both Fresnel transformation(for(a 1 a 2)/√ 2) and the Weyl transformation(for(a 1 + a 2)/√ 2).Physically,(a 1 a 2)/√ 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2012-10, Vol.21 (10), p.70-72
1. Verfasser: 谢传梅 范洪义
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the newly developed coherent-entangled state representation,we propose the so-called Fresnel-Weyl complementary transformation operator.The new operator plays the roles of both Fresnel transformation(for(a 1 a 2)/√ 2) and the Weyl transformation(for(a 1 + a 2)/√ 2).Physically,(a 1 a 2)/√ 2 and(a 1 + a 2)/√ 2 could be a symmetric beamsplitter's two output fields for the incoming fields a 1 and a 2.We show that the two transformations are concisely expressed in the coherent-entangled state representation as a projective operator in the integration form.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/10/100302