The Fresnel-Weyl complementary transformation
Based on the newly developed coherent-entangled state representation,we propose the so-called Fresnel-Weyl complementary transformation operator.The new operator plays the roles of both Fresnel transformation(for(a 1 a 2)/√ 2) and the Weyl transformation(for(a 1 + a 2)/√ 2).Physically,(a 1 a 2)/√ 2...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2012-10, Vol.21 (10), p.70-72 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the newly developed coherent-entangled state representation,we propose the so-called Fresnel-Weyl complementary transformation operator.The new operator plays the roles of both Fresnel transformation(for(a 1 a 2)/√ 2) and the Weyl transformation(for(a 1 + a 2)/√ 2).Physically,(a 1 a 2)/√ 2 and(a 1 + a 2)/√ 2 could be a symmetric beamsplitter's two output fields for the incoming fields a 1 and a 2.We show that the two transformations are concisely expressed in the coherent-entangled state representation as a projective operator in the integration form. |
---|---|
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/10/100302 |