Compatibility of arithmetic and algebraic local constants (the case $\ell \neq p$)

We show that arithmetic local constants attached by Mazur and Rubin to pairs of self-dual Galois representations which are congruent modulo a prime number $p>2$ are compatible with the usual local constants at all primes not dividing $p$ and in two special cases also at primes dividing $p$. We de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2015-09, Vol.151 (9), p.1626-1646
1. Verfasser: Nekovar, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that arithmetic local constants attached by Mazur and Rubin to pairs of self-dual Galois representations which are congruent modulo a prime number $p>2$ are compatible with the usual local constants at all primes not dividing $p$ and in two special cases also at primes dividing $p$. We deduce new cases of the $p$-parity conjecture for Selmer groups of abelian varieties with real multiplication (Theorem 4.14) and elliptic curves (Theorem 5.10).
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X14008069