Self-Tuning Weighted Fusion Kalman Filter for ARMA Signals
For the multisensor single channel autoregressive moving average (ARMA) signal with a white measurement noise and autoregressive (AR) colored measurement noises as common disturbance noises, when model parameters and noise statistics are partially unknown, a self-tuning weighted fusion Kalman filter...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-04, Vol.538 (Mechanical, Electronic and Engineering Technologies (ICMEET 2014)), p.439-442 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the multisensor single channel autoregressive moving average (ARMA) signal with a white measurement noise and autoregressive (AR) colored measurement noises as common disturbance noises, when model parameters and noise statistics are partially unknown, a self-tuning weighted fusion Kalman filter is presented based on classical Kalman filter method. The local estimates are obtained by applying the recursive instrumental variable (RIV) and correlation method. Then the optimal weighted fusion Kalman filter is obtained by substituting all the fusion estimates into the corresponding optimal Kalman filter. A simulation example shows its effectiveness. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.538.439 |