Self-Tuning Weighted Fusion Kalman Filter for ARMA Signals

For the multisensor single channel autoregressive moving average (ARMA) signal with a white measurement noise and autoregressive (AR) colored measurement noises as common disturbance noises, when model parameters and noise statistics are partially unknown, a self-tuning weighted fusion Kalman filter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-04, Vol.538 (Mechanical, Electronic and Engineering Technologies (ICMEET 2014)), p.439-442
Hauptverfasser: Tao, Gui Li, Liu, Wen Qiang, Han, Na
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the multisensor single channel autoregressive moving average (ARMA) signal with a white measurement noise and autoregressive (AR) colored measurement noises as common disturbance noises, when model parameters and noise statistics are partially unknown, a self-tuning weighted fusion Kalman filter is presented based on classical Kalman filter method. The local estimates are obtained by applying the recursive instrumental variable (RIV) and correlation method. Then the optimal weighted fusion Kalman filter is obtained by substituting all the fusion estimates into the corresponding optimal Kalman filter. A simulation example shows its effectiveness.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.538.439