Link Quality and MAC-Overhead Aware Predictive Preemptive Multipath Routing Protocol for Mobile Ad Hoc Networks
In Ad Hoc networks, route failure may occur due to less received power, mobility, congestion and node failures. Many approaches have been proposed in literature to solve this problem, where a node predicts pre-emptively the route failure that occurs with the less received power. However, these appro...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-02, Vol.513-517 (Applied Science, Materials Science and Information Technologies in Industry), p.812-821 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In Ad Hoc networks, route failure may occur due to less received power, mobility, congestion and node failures. Many approaches have been proposed in literature to solve this problem, where a node predicts pre-emptively the route failure that occurs with the less received power. However, these approaches encounter some difficulties, especially in scenario without mobility where route failures may arise. In this paper, we propose an improvement of AOMDV protocol called LO-PPAOMDV (Link Quality and MAC-Overhead aware Predictive Preemptive AOMDV). This protocol is based on new metric combine two routing metrics (Link Quality, MAC Overhead) between each node and one hop neighbor. Also we propose a cross-layer networking mechanism to distinguish between both situations, failures due to congestion or mobility, and consequently avoiding unnecessary route repair process. The LO-PPAOMDV was implemented using NS-2. The simulation results show that our approach improves the overall performance of the network. It reduces the average end to end delay, the routing overhead, and increases the throughput and packet delivery fraction of the network. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.513-517.812 |