Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy
We have used replica molding and large-range atomic force microscopy to characterize the three-dimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow cav...
Gespeichert in:
Veröffentlicht in: | Microelectronic engineering 2015-06, Vol.141, p.6-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 6 |
container_title | Microelectronic engineering |
container_volume | 141 |
creator | Stöhr, Frederik Michael-Lindhard, Jonas Simons, Hugh Poulsen, Henning Friis Hübner, Jörg Hansen, Ole Garnaes, Joergen Jensen, Flemming |
description | We have used replica molding and large-range atomic force microscopy to characterize the three-dimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6.32 + or - 0.06) [mu]m, i.e., with 1% accuracy, while the ROC linearly increases by (0.52 + or - 0.03) [mu]m from the top to the bottom of the sidewalls. Nanometer sized surface defects are also well replicated. In addition, the method allows combining multiple features from differently processed wafers into a single sample, accelerating characterization in process optimization tasks. To access the sidewall shape samples needed to be cleaved. The method was applied to study X-ray refractive optics, whose performance is crucially affected by their three dimensional shapes. |
doi_str_mv | 10.1016/j.mee.2014.11.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762081188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762081188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-25e60b5d777b5e3a3c4a615e9c16419b4b034100799ef1e8c868fad5700307de3</originalsourceid><addsrcrecordid>eNotkDtPxDAQhF2AxHHwA-hc0iR487JTohMv6SSao7YcZxMS-RHspMi_J6e7arSjmdXoI-QJWAoMqpcxtYhpxqBIAVKWVTdkt_k8qXPgd-Q-xpFtd8HEjtjTb0BM2sGii4N3ylCnnLc4B298v1LfUTvo4OMcFj0vASNtVhpwMoNW1HrTDq6nyrXUqNBjEpTrkarZby3a-aDx2td-Wh_IbadMxMer7snP-9vp8Jkcvz--Dq_HRGdczElWYsWasuWcNyXmKteFqqDEWm-roW6KhuUFMMbrGjtAoUUlOtWWnLGc8RbzPXm-_J2C_1swztIOUaMxyqFfogReZUwACLFF4RI9b4wBOzmFwaqwSmDyjFOOcsMpzzglgNxw5v8a4m2P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762081188</pqid></control><display><type>article</type><title>Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Stöhr, Frederik ; Michael-Lindhard, Jonas ; Simons, Hugh ; Poulsen, Henning Friis ; Hübner, Jörg ; Hansen, Ole ; Garnaes, Joergen ; Jensen, Flemming</creator><creatorcontrib>Stöhr, Frederik ; Michael-Lindhard, Jonas ; Simons, Hugh ; Poulsen, Henning Friis ; Hübner, Jörg ; Hansen, Ole ; Garnaes, Joergen ; Jensen, Flemming</creatorcontrib><description>We have used replica molding and large-range atomic force microscopy to characterize the three-dimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6.32 + or - 0.06) [mu]m, i.e., with 1% accuracy, while the ROC linearly increases by (0.52 + or - 0.03) [mu]m from the top to the bottom of the sidewalls. Nanometer sized surface defects are also well replicated. In addition, the method allows combining multiple features from differently processed wafers into a single sample, accelerating characterization in process optimization tasks. To access the sidewall shape samples needed to be cleaved. The method was applied to study X-ray refractive optics, whose performance is crucially affected by their three dimensional shapes.</description><identifier>ISSN: 0167-9317</identifier><identifier>DOI: 10.1016/j.mee.2014.11.026</identifier><language>eng</language><subject>Atomic force microscopy ; Holes ; Microstructure ; Nanostructure ; Samples ; Statistical analysis ; Statistical methods ; Three dimensional ; Wafers</subject><ispartof>Microelectronic engineering, 2015-06, Vol.141, p.6-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-25e60b5d777b5e3a3c4a615e9c16419b4b034100799ef1e8c868fad5700307de3</citedby><cites>FETCH-LOGICAL-c278t-25e60b5d777b5e3a3c4a615e9c16419b4b034100799ef1e8c868fad5700307de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Stöhr, Frederik</creatorcontrib><creatorcontrib>Michael-Lindhard, Jonas</creatorcontrib><creatorcontrib>Simons, Hugh</creatorcontrib><creatorcontrib>Poulsen, Henning Friis</creatorcontrib><creatorcontrib>Hübner, Jörg</creatorcontrib><creatorcontrib>Hansen, Ole</creatorcontrib><creatorcontrib>Garnaes, Joergen</creatorcontrib><creatorcontrib>Jensen, Flemming</creatorcontrib><title>Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy</title><title>Microelectronic engineering</title><description>We have used replica molding and large-range atomic force microscopy to characterize the three-dimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6.32 + or - 0.06) [mu]m, i.e., with 1% accuracy, while the ROC linearly increases by (0.52 + or - 0.03) [mu]m from the top to the bottom of the sidewalls. Nanometer sized surface defects are also well replicated. In addition, the method allows combining multiple features from differently processed wafers into a single sample, accelerating characterization in process optimization tasks. To access the sidewall shape samples needed to be cleaved. The method was applied to study X-ray refractive optics, whose performance is crucially affected by their three dimensional shapes.</description><subject>Atomic force microscopy</subject><subject>Holes</subject><subject>Microstructure</subject><subject>Nanostructure</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Three dimensional</subject><subject>Wafers</subject><issn>0167-9317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkDtPxDAQhF2AxHHwA-hc0iR487JTohMv6SSao7YcZxMS-RHspMi_J6e7arSjmdXoI-QJWAoMqpcxtYhpxqBIAVKWVTdkt_k8qXPgd-Q-xpFtd8HEjtjTb0BM2sGii4N3ylCnnLc4B298v1LfUTvo4OMcFj0vASNtVhpwMoNW1HrTDq6nyrXUqNBjEpTrkarZby3a-aDx2td-Wh_IbadMxMer7snP-9vp8Jkcvz--Dq_HRGdczElWYsWasuWcNyXmKteFqqDEWm-roW6KhuUFMMbrGjtAoUUlOtWWnLGc8RbzPXm-_J2C_1swztIOUaMxyqFfogReZUwACLFF4RI9b4wBOzmFwaqwSmDyjFOOcsMpzzglgNxw5v8a4m2P</recordid><startdate>20150615</startdate><enddate>20150615</enddate><creator>Stöhr, Frederik</creator><creator>Michael-Lindhard, Jonas</creator><creator>Simons, Hugh</creator><creator>Poulsen, Henning Friis</creator><creator>Hübner, Jörg</creator><creator>Hansen, Ole</creator><creator>Garnaes, Joergen</creator><creator>Jensen, Flemming</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150615</creationdate><title>Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy</title><author>Stöhr, Frederik ; Michael-Lindhard, Jonas ; Simons, Hugh ; Poulsen, Henning Friis ; Hübner, Jörg ; Hansen, Ole ; Garnaes, Joergen ; Jensen, Flemming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-25e60b5d777b5e3a3c4a615e9c16419b4b034100799ef1e8c868fad5700307de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic force microscopy</topic><topic>Holes</topic><topic>Microstructure</topic><topic>Nanostructure</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Three dimensional</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stöhr, Frederik</creatorcontrib><creatorcontrib>Michael-Lindhard, Jonas</creatorcontrib><creatorcontrib>Simons, Hugh</creatorcontrib><creatorcontrib>Poulsen, Henning Friis</creatorcontrib><creatorcontrib>Hübner, Jörg</creatorcontrib><creatorcontrib>Hansen, Ole</creatorcontrib><creatorcontrib>Garnaes, Joergen</creatorcontrib><creatorcontrib>Jensen, Flemming</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stöhr, Frederik</au><au>Michael-Lindhard, Jonas</au><au>Simons, Hugh</au><au>Poulsen, Henning Friis</au><au>Hübner, Jörg</au><au>Hansen, Ole</au><au>Garnaes, Joergen</au><au>Jensen, Flemming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy</atitle><jtitle>Microelectronic engineering</jtitle><date>2015-06-15</date><risdate>2015</risdate><volume>141</volume><spage>6</spage><epage>11</epage><pages>6-11</pages><issn>0167-9317</issn><abstract>We have used replica molding and large-range atomic force microscopy to characterize the three-dimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6.32 + or - 0.06) [mu]m, i.e., with 1% accuracy, while the ROC linearly increases by (0.52 + or - 0.03) [mu]m from the top to the bottom of the sidewalls. Nanometer sized surface defects are also well replicated. In addition, the method allows combining multiple features from differently processed wafers into a single sample, accelerating characterization in process optimization tasks. To access the sidewall shape samples needed to be cleaved. The method was applied to study X-ray refractive optics, whose performance is crucially affected by their three dimensional shapes.</abstract><doi>10.1016/j.mee.2014.11.026</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9317 |
ispartof | Microelectronic engineering, 2015-06, Vol.141, p.6-11 |
issn | 0167-9317 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762081188 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Atomic force microscopy Holes Microstructure Nanostructure Samples Statistical analysis Statistical methods Three dimensional Wafers |
title | Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T19%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20nanometrology%20of%20microstructures%20by%20replica%20molding%20and%20large-range%20atomic%20force%20microscopy&rft.jtitle=Microelectronic%20engineering&rft.au=St%C3%B6hr,%20Frederik&rft.date=2015-06-15&rft.volume=141&rft.spage=6&rft.epage=11&rft.pages=6-11&rft.issn=0167-9317&rft_id=info:doi/10.1016/j.mee.2014.11.026&rft_dat=%3Cproquest_cross%3E1762081188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762081188&rft_id=info:pmid/&rfr_iscdi=true |