Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy

We have used replica molding and large-range atomic force microscopy to characterize the three-dimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow cav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2015-06, Vol.141, p.6-11
Hauptverfasser: Stöhr, Frederik, Michael-Lindhard, Jonas, Simons, Hugh, Poulsen, Henning Friis, Hübner, Jörg, Hansen, Ole, Garnaes, Joergen, Jensen, Flemming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 6
container_title Microelectronic engineering
container_volume 141
creator Stöhr, Frederik
Michael-Lindhard, Jonas
Simons, Hugh
Poulsen, Henning Friis
Hübner, Jörg
Hansen, Ole
Garnaes, Joergen
Jensen, Flemming
description We have used replica molding and large-range atomic force microscopy to characterize the three-dimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6.32 + or - 0.06) [mu]m, i.e., with 1% accuracy, while the ROC linearly increases by (0.52 + or - 0.03) [mu]m from the top to the bottom of the sidewalls. Nanometer sized surface defects are also well replicated. In addition, the method allows combining multiple features from differently processed wafers into a single sample, accelerating characterization in process optimization tasks. To access the sidewall shape samples needed to be cleaved. The method was applied to study X-ray refractive optics, whose performance is crucially affected by their three dimensional shapes.
doi_str_mv 10.1016/j.mee.2014.11.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762081188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762081188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-25e60b5d777b5e3a3c4a615e9c16419b4b034100799ef1e8c868fad5700307de3</originalsourceid><addsrcrecordid>eNotkDtPxDAQhF2AxHHwA-hc0iR487JTohMv6SSao7YcZxMS-RHspMi_J6e7arSjmdXoI-QJWAoMqpcxtYhpxqBIAVKWVTdkt_k8qXPgd-Q-xpFtd8HEjtjTb0BM2sGii4N3ylCnnLc4B298v1LfUTvo4OMcFj0vASNtVhpwMoNW1HrTDq6nyrXUqNBjEpTrkarZby3a-aDx2td-Wh_IbadMxMer7snP-9vp8Jkcvz--Dq_HRGdczElWYsWasuWcNyXmKteFqqDEWm-roW6KhuUFMMbrGjtAoUUlOtWWnLGc8RbzPXm-_J2C_1swztIOUaMxyqFfogReZUwACLFF4RI9b4wBOzmFwaqwSmDyjFOOcsMpzzglgNxw5v8a4m2P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762081188</pqid></control><display><type>article</type><title>Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Stöhr, Frederik ; Michael-Lindhard, Jonas ; Simons, Hugh ; Poulsen, Henning Friis ; Hübner, Jörg ; Hansen, Ole ; Garnaes, Joergen ; Jensen, Flemming</creator><creatorcontrib>Stöhr, Frederik ; Michael-Lindhard, Jonas ; Simons, Hugh ; Poulsen, Henning Friis ; Hübner, Jörg ; Hansen, Ole ; Garnaes, Joergen ; Jensen, Flemming</creatorcontrib><description>We have used replica molding and large-range atomic force microscopy to characterize the three-dimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6.32 + or - 0.06) [mu]m, i.e., with 1% accuracy, while the ROC linearly increases by (0.52 + or - 0.03) [mu]m from the top to the bottom of the sidewalls. Nanometer sized surface defects are also well replicated. In addition, the method allows combining multiple features from differently processed wafers into a single sample, accelerating characterization in process optimization tasks. To access the sidewall shape samples needed to be cleaved. The method was applied to study X-ray refractive optics, whose performance is crucially affected by their three dimensional shapes.</description><identifier>ISSN: 0167-9317</identifier><identifier>DOI: 10.1016/j.mee.2014.11.026</identifier><language>eng</language><subject>Atomic force microscopy ; Holes ; Microstructure ; Nanostructure ; Samples ; Statistical analysis ; Statistical methods ; Three dimensional ; Wafers</subject><ispartof>Microelectronic engineering, 2015-06, Vol.141, p.6-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-25e60b5d777b5e3a3c4a615e9c16419b4b034100799ef1e8c868fad5700307de3</citedby><cites>FETCH-LOGICAL-c278t-25e60b5d777b5e3a3c4a615e9c16419b4b034100799ef1e8c868fad5700307de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Stöhr, Frederik</creatorcontrib><creatorcontrib>Michael-Lindhard, Jonas</creatorcontrib><creatorcontrib>Simons, Hugh</creatorcontrib><creatorcontrib>Poulsen, Henning Friis</creatorcontrib><creatorcontrib>Hübner, Jörg</creatorcontrib><creatorcontrib>Hansen, Ole</creatorcontrib><creatorcontrib>Garnaes, Joergen</creatorcontrib><creatorcontrib>Jensen, Flemming</creatorcontrib><title>Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy</title><title>Microelectronic engineering</title><description>We have used replica molding and large-range atomic force microscopy to characterize the three-dimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6.32 + or - 0.06) [mu]m, i.e., with 1% accuracy, while the ROC linearly increases by (0.52 + or - 0.03) [mu]m from the top to the bottom of the sidewalls. Nanometer sized surface defects are also well replicated. In addition, the method allows combining multiple features from differently processed wafers into a single sample, accelerating characterization in process optimization tasks. To access the sidewall shape samples needed to be cleaved. The method was applied to study X-ray refractive optics, whose performance is crucially affected by their three dimensional shapes.</description><subject>Atomic force microscopy</subject><subject>Holes</subject><subject>Microstructure</subject><subject>Nanostructure</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Three dimensional</subject><subject>Wafers</subject><issn>0167-9317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkDtPxDAQhF2AxHHwA-hc0iR487JTohMv6SSao7YcZxMS-RHspMi_J6e7arSjmdXoI-QJWAoMqpcxtYhpxqBIAVKWVTdkt_k8qXPgd-Q-xpFtd8HEjtjTb0BM2sGii4N3ylCnnLc4B298v1LfUTvo4OMcFj0vASNtVhpwMoNW1HrTDq6nyrXUqNBjEpTrkarZby3a-aDx2td-Wh_IbadMxMer7snP-9vp8Jkcvz--Dq_HRGdczElWYsWasuWcNyXmKteFqqDEWm-roW6KhuUFMMbrGjtAoUUlOtWWnLGc8RbzPXm-_J2C_1swztIOUaMxyqFfogReZUwACLFF4RI9b4wBOzmFwaqwSmDyjFOOcsMpzzglgNxw5v8a4m2P</recordid><startdate>20150615</startdate><enddate>20150615</enddate><creator>Stöhr, Frederik</creator><creator>Michael-Lindhard, Jonas</creator><creator>Simons, Hugh</creator><creator>Poulsen, Henning Friis</creator><creator>Hübner, Jörg</creator><creator>Hansen, Ole</creator><creator>Garnaes, Joergen</creator><creator>Jensen, Flemming</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150615</creationdate><title>Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy</title><author>Stöhr, Frederik ; Michael-Lindhard, Jonas ; Simons, Hugh ; Poulsen, Henning Friis ; Hübner, Jörg ; Hansen, Ole ; Garnaes, Joergen ; Jensen, Flemming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-25e60b5d777b5e3a3c4a615e9c16419b4b034100799ef1e8c868fad5700307de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic force microscopy</topic><topic>Holes</topic><topic>Microstructure</topic><topic>Nanostructure</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Three dimensional</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stöhr, Frederik</creatorcontrib><creatorcontrib>Michael-Lindhard, Jonas</creatorcontrib><creatorcontrib>Simons, Hugh</creatorcontrib><creatorcontrib>Poulsen, Henning Friis</creatorcontrib><creatorcontrib>Hübner, Jörg</creatorcontrib><creatorcontrib>Hansen, Ole</creatorcontrib><creatorcontrib>Garnaes, Joergen</creatorcontrib><creatorcontrib>Jensen, Flemming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stöhr, Frederik</au><au>Michael-Lindhard, Jonas</au><au>Simons, Hugh</au><au>Poulsen, Henning Friis</au><au>Hübner, Jörg</au><au>Hansen, Ole</au><au>Garnaes, Joergen</au><au>Jensen, Flemming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy</atitle><jtitle>Microelectronic engineering</jtitle><date>2015-06-15</date><risdate>2015</risdate><volume>141</volume><spage>6</spage><epage>11</epage><pages>6-11</pages><issn>0167-9317</issn><abstract>We have used replica molding and large-range atomic force microscopy to characterize the three-dimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6.32 + or - 0.06) [mu]m, i.e., with 1% accuracy, while the ROC linearly increases by (0.52 + or - 0.03) [mu]m from the top to the bottom of the sidewalls. Nanometer sized surface defects are also well replicated. In addition, the method allows combining multiple features from differently processed wafers into a single sample, accelerating characterization in process optimization tasks. To access the sidewall shape samples needed to be cleaved. The method was applied to study X-ray refractive optics, whose performance is crucially affected by their three dimensional shapes.</abstract><doi>10.1016/j.mee.2014.11.026</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2015-06, Vol.141, p.6-11
issn 0167-9317
language eng
recordid cdi_proquest_miscellaneous_1762081188
source Elsevier ScienceDirect Journals Complete
subjects Atomic force microscopy
Holes
Microstructure
Nanostructure
Samples
Statistical analysis
Statistical methods
Three dimensional
Wafers
title Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T19%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20nanometrology%20of%20microstructures%20by%20replica%20molding%20and%20large-range%20atomic%20force%20microscopy&rft.jtitle=Microelectronic%20engineering&rft.au=St%C3%B6hr,%20Frederik&rft.date=2015-06-15&rft.volume=141&rft.spage=6&rft.epage=11&rft.pages=6-11&rft.issn=0167-9317&rft_id=info:doi/10.1016/j.mee.2014.11.026&rft_dat=%3Cproquest_cross%3E1762081188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762081188&rft_id=info:pmid/&rfr_iscdi=true