Lagrangian descriptors for two dimensional, area preserving, autonomous and nonautonomous maps

•Discrete Lagrangian descriptors (DLD) for maps.•Autonomous and nonautonomous area preserving maps.•“Singular sets” of DLDs and stable and unstable manifolds.•Chaotic saddles for autonomous and nonautonomous maps. In this paper we generalize the method of Lagrangian descriptors to two dimensional, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2015-10, Vol.27 (1-3), p.40-51
Hauptverfasser: Lopesino, Carlos, Balibrea, Francisco, Wiggins, Stephen, Mancho, Ana M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Discrete Lagrangian descriptors (DLD) for maps.•Autonomous and nonautonomous area preserving maps.•“Singular sets” of DLDs and stable and unstable manifolds.•Chaotic saddles for autonomous and nonautonomous maps. In this paper we generalize the method of Lagrangian descriptors to two dimensional, area preserving, autonomous and nonautonomous discrete time dynamical systems. We consider four generic model problems – a hyperbolic saddle point for a linear, area-preserving autonomous map, a hyperbolic saddle point for a nonlinear, area-preserving autonomous map, a hyperbolic saddle point for linear, area-preserving nonautonomous map, and a hyperbolic saddle point for nonlinear, area-preserving nonautonomous map. The discrete time setting allows us to evaluate the expression for the Lagrangian descriptors explicitly for a certain class of norms. This enables us to provide a rigorous setting for the notion that the “singular sets” of the Lagrangian descriptors correspond to the stable and unstable manifolds of hyperbolic invariant sets, as well as to understand how this depends upon the particular norms that are used. Finally we analyze, from the computational point of view, the performance of this tool for general nonlinear maps, by computing the “chaotic saddle” for autonomous and nonautonomous versions of the Hénon map.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2015.02.022