Measuring the Differential Stoichiometry and Energetics of Ligand Binding to Macromolecules by Single-Molecule Force Spectroscopy: An Extended Theory

Many chemical techniques exist for measuring the stoichiometry of ligand binding to a macromolecule; however, these techniques are often specific to certain ligands or require the presumption of specific binding models. Here, we further develop a previously reported, general, thermodynamic method fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2015-02, Vol.119 (5), p.1930-1938
Hauptverfasser: Jacobson, David R, Saleh, Omar A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many chemical techniques exist for measuring the stoichiometry of ligand binding to a macromolecule; however, these techniques are often specific to certain ligands or require the presumption of specific binding models. Here, we further develop a previously reported, general, thermodynamic method for extracting the change in number of ligands bound to a macromolecule as that macromolecule undergoes a conformational transition driven by mechanical stretching, for example, by magnetic tweezers or optical trapping. We extend the theory of this method to consider systems with many ligands, experiments conducted in different thermodynamic ensembles (e.g., constant-force, constant-extension), and experiments in which the system is not at equilibrium. Further, we show that analysis of the same single-molecule mechanical manipulation data yields a measure of the differential free energy of stabilization due to ligand binding, that is, the free energy contribution by which ligand binding favors one conformation of the macromolecule over another. We interpret an existing data set measuring ion binding to RNA and DNA in terms of this free energy.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp511555g