A new network approach to Bayesian inference in partial differential equations
Summary We introduce a novel numerical approach to parameter estimation in partial differential equations in a Bayesian inference context. The main idea is to translate the equation into a state‐discrete dynamic Bayesian network with the discretization of cellular probabilistic automata. There exist...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2015-11, Vol.104 (5), p.313-329 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
We introduce a novel numerical approach to parameter estimation in partial differential equations in a Bayesian inference context. The main idea is to translate the equation into a state‐discrete dynamic Bayesian network with the discretization of cellular probabilistic automata. There exists a vast pool of inference algorithms in the probabilistic graphical models field, which can be applied to the network.
In particular, we reformulate the parameter estimation as a filtering problem, discuss requirements for according tools in our specific setup, and choose the Boyen–Koller algorithm. To demonstrate our ideas, the scheme is applied to the problem of arsenate advection and adsorption in a water pipe: from measurements of the concentration of dissolved arsenate at the outflow boundary condition, we infer the strength of an arsenate source at the inflow boundary condition. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.4928 |