Theoretical study of molecular hydrogen and spiltover hydrogen storage on two-dimensional covalent-organic frameworks

Molecular hydrogen and spiltover hydrogen storages on five two-dimensional (2D) covalent-organic frameworks (COFs) (PPy-COF, TP-COF, BTP-COF, COF-18 A, and HHTP-DPB COF) are investigated using the grand canonical Monte Carlo (GCMC) simulations and the density functional theory (DFT), respectively. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2014-06, Vol.23 (6), p.493-500
1. Verfasser: 刘秀英 何杰 于景新 栗正新 樊志琴
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular hydrogen and spiltover hydrogen storages on five two-dimensional (2D) covalent-organic frameworks (COFs) (PPy-COF, TP-COF, BTP-COF, COF-18 A, and HHTP-DPB COF) are investigated using the grand canonical Monte Carlo (GCMC) simulations and the density functional theory (DFT), respectively. The GCMC simulated results show that HHTP-DPB COF has the best performance for hydrogen storage, followed by BTP-COF, TP-COF, COF-18 A, and PPy-COE However, their adsorption amounts at room temperature are all too low to meet the uptake target set by US Department of Energy (US-DOE) and enable practical applications. The effects of pore size, surface area, and isosteric heat of hydrogen on adsorption amount are considered, which indicate that these three factors are all the important factors for determining the H2 adsorption amount. The chemisorptions of spiltover hydrogen atoms on these five COFs represented by the cluster models are investigated using the DFT method. The saturation cluster models are constructed by considering all possible adsorption sites for these cluster models. The average binding energy of a hydrogen atom and the saturation hydrogen storage density are calculated. The large average binding energy indicates that the spillover process may pro- ceed smoothly and reversibly. The saturation hydrogen storage density is much larger than the physisorption uptake of H2 molecules at 298 K and 100 bar (1 bar = 105 Pa), and is close to or exceeds the 2010 US-DOE target of 6 wt% for hydrogen storage. This suggests that the hydrogen storage capacities of these COFs by spillover may be significantly enhanced. Thus 2D COFs studied in this paper are suitable hydrogen storage media by spillover.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/6/067303