Encoding Abrupt and Uniform Dopant Profiles in Vapor–Liquid–Solid Nanowires by Suppressing the Reservoir Effect of the Liquid Catalyst
Semiconductor nanowires (NWs) are often synthesized by the vapor–liquid–solid (VLS) mechanism, a process in which a liquid dropletsupplied with precursors in the vapor phasecatalyzes the growth of a solid, crystalline NW. By changing the supply of precursors, the NW composition can be altered as i...
Gespeichert in:
Veröffentlicht in: | ACS nano 2014-11, Vol.8 (11), p.11790-11798 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Semiconductor nanowires (NWs) are often synthesized by the vapor–liquid–solid (VLS) mechanism, a process in which a liquid dropletsupplied with precursors in the vapor phasecatalyzes the growth of a solid, crystalline NW. By changing the supply of precursors, the NW composition can be altered as it grows to create axial heterostructures, which are applicable to a range of technologies. The abruptness of the heterojunction is mediated by the liquid catalyst, which can act as a reservoir of material and impose a lower limit on the junction width. Here, we demonstrate that this “reservoir effect” is not a fundamental limitation and can be suppressed by selection of specific VLS reaction conditions. For Au-catalyzed Si NWs doped with P, we evaluate dopant profiles under a variety of synthetic conditions using a combination of elemental imaging with energy-dispersive X-ray spectroscopy and dopant-dependent wet-chemical etching. We observe a diameter-dependent reservoir effect under most conditions. However, at sufficiently slow NW growth rates (≤250 nm/min) and low reactor pressures (≤40 Torr), the dopant profiles are diameter independent and radially uniform with abrupt, sub-10 nm axial transitions. A kinetic model of NW doping, including the microscopic processes of (1) P incorporation into the liquid catalyst, (2) P evaporation from the catalyst, and (3) P crystallization in the Si NW, quantitatively explains the results and shows that suppression of the reservoir effect can be achieved when P evaporation is much faster than P crystallization. We expect similar reaction conditions can be developed for other NW systems and will facilitate the development of NW-based technologies that require uniform and abrupt heterostructures. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/nn505404y |