Stacking Structures of Few-Layer Graphene Revealed by Phase-Sensitive Infrared Nanoscopy

The stacking orders in few-layer graphene (FLG) strongly influences the electronic properties of the material. To explore the stacking-specific properties of FLG in detail, one needs powerful microscopy techniques that visualize stacking domains with sufficient spatial resolution. We demonstrate tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-07, Vol.9 (7), p.6765-6773
Hauptverfasser: Kim, Deok-Soo, Kwon, Hyuksang, Nikitin, Alexey Yu, Ahn, Seongjin, Martín-Moreno, Luis, García-Vidal, Francisco J, Ryu, Sunmin, Min, Hongki, Kim, Zee Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stacking orders in few-layer graphene (FLG) strongly influences the electronic properties of the material. To explore the stacking-specific properties of FLG in detail, one needs powerful microscopy techniques that visualize stacking domains with sufficient spatial resolution. We demonstrate that infrared (IR) scattering scanning near-field optical microscopy (sSNOM) directly maps out the stacking domains of FLG with a nanometric resolution, based on the stacking-specific IR conductivities of FLG. The intensity and phase contrasts of sSNOM are compared with the sSNOM contrast model, which is based on the dipolar tip–sample coupling and the theoretical conductivity spectra of FLG, allowing a clear assignment of each FLG domain as Bernal, rhombohedral, or intermediate stacks for tri-, tetra-, and pentalayer graphene. The method offers 10–100 times better spatial resolution than the far-field Raman and infrared spectroscopic methods, yet it allows far more experimental flexibility than the scanning tunneling microscopy and electron microscopy.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b02813