Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers

Atomically thin heterostructures of transition-metal dichalcogenides (TMDs) with various geometrical and energy band alignments are the key materials for next generation flexible nanoelectronics. The individual TMD monolayers can be adjoined laterally to construct in-plane heterostructures, which ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-01, Vol.15 (1), p.410-415
Hauptverfasser: Zhang, Xin-Quan, Lin, Chin-Hao, Tseng, Yu-Wen, Huang, Kuan-Hua, Lee, Yi-Hsien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomically thin heterostructures of transition-metal dichalcogenides (TMDs) with various geometrical and energy band alignments are the key materials for next generation flexible nanoelectronics. The individual TMD monolayers can be adjoined laterally to construct in-plane heterostructures, which are difficult to reach with the laborious pick-up-and-transfer method of the exfoliated flakes. The ability to produce copious amounts of high quality layered heterostructures on diverse surfaces is highly desirable but it has remained a challenging issue. Here, we have achieved a direct synthesis of lateral heterostructures of monolayer TMDs: MoS2–WS2 and MoSe2–WSe2. The synthesis was performed using ambient-pressure chemical vapor deposition (CVD) with aromatic molecules as seeding promoters. We discuss possible growth behaviors, and we examine the symmetry and the interface of these heterostructures using second-harmonic generation and atomic-resolution scanning TEM. We found that the one-dimensinal (1D) interface of the lateral heterostructures picks the zigzag direction of the lattice instead of the armchair direction. Our method offers a controllable synthesis to obtain high-quality in-plane heterostructures of TMD atomic layers with 1D interface geometry.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl503744f