Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u

Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2015-01, Vol.119 (4), p.752-766
Hauptverfasser: Herr, Jonathan D, Talbot, Justin, Steele, Ryan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 4
container_start_page 752
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 119
creator Herr, Jonathan D
Talbot, Justin
Steele, Ryan P
description Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-cluster theory approaches. In small clusters, an ion-radical contact pair OH...H sub(3)O super(+) is known to form upon ionization. The transition from n = 4 to n = 5 molecules in the cluster, however, is found to demarcate a size regime in which a propensity for the ion and radical to separate exists. This trend is consistent with recent experimental vibrational analyses. Decomposition of the cluster energetics reveals that preferential solvation of the hydronium cation by water serves as the dominant driving force for this pair separation, which should persist in larger clusters and bulk water ionization.
doi_str_mv 10.1021/jp509698y
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762059492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762059492</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17620594923</originalsourceid><addsrcrecordid>eNqVir0KwjAYAIMoWH8G3yBjC1a_pE01syiKg4KCo1RNpSUmmq8Z9OkV8QWc7jiOkAGDEQPOxtVdgMzk9NkgARMcYsGZaH4cpjIWWSLbpINYAQBLeBqQ9a52_lx7l2u6dfbqFGJpDS0NnWmPtXJIbUFX1pQvdaGH_FOGNFxS9KeQR5voK5FhsfA90ipyjar_Y5eEi_l-tozvzj68wvp4K_GstM6Nsh6PbJJxEDKVPPljfQNzI0Rf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762059492</pqid></control><display><type>article</type><title>Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u</title><source>American Chemical Society Journals</source><creator>Herr, Jonathan D ; Talbot, Justin ; Steele, Ryan P</creator><creatorcontrib>Herr, Jonathan D ; Talbot, Justin ; Steele, Ryan P</creatorcontrib><description>Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-cluster theory approaches. In small clusters, an ion-radical contact pair OH...H sub(3)O super(+) is known to form upon ionization. The transition from n = 4 to n = 5 molecules in the cluster, however, is found to demarcate a size regime in which a propensity for the ion and radical to separate exists. This trend is consistent with recent experimental vibrational analyses. Decomposition of the cluster energetics reveals that preferential solvation of the hydronium cation by water serves as the dominant driving force for this pair separation, which should persist in larger clusters and bulk water ionization.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp509698y</identifier><language>eng</language><subject>Clusters ; Contact ; Coupling (molecular) ; Energy use ; Ionization ; Progressions ; Radicals ; Solvation</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2015-01, Vol.119 (4), p.752-766</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Herr, Jonathan D</creatorcontrib><creatorcontrib>Talbot, Justin</creatorcontrib><creatorcontrib>Steele, Ryan P</creatorcontrib><title>Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><description>Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-cluster theory approaches. In small clusters, an ion-radical contact pair OH...H sub(3)O super(+) is known to form upon ionization. The transition from n = 4 to n = 5 molecules in the cluster, however, is found to demarcate a size regime in which a propensity for the ion and radical to separate exists. This trend is consistent with recent experimental vibrational analyses. Decomposition of the cluster energetics reveals that preferential solvation of the hydronium cation by water serves as the dominant driving force for this pair separation, which should persist in larger clusters and bulk water ionization.</description><subject>Clusters</subject><subject>Contact</subject><subject>Coupling (molecular)</subject><subject>Energy use</subject><subject>Ionization</subject><subject>Progressions</subject><subject>Radicals</subject><subject>Solvation</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVir0KwjAYAIMoWH8G3yBjC1a_pE01syiKg4KCo1RNpSUmmq8Z9OkV8QWc7jiOkAGDEQPOxtVdgMzk9NkgARMcYsGZaH4cpjIWWSLbpINYAQBLeBqQ9a52_lx7l2u6dfbqFGJpDS0NnWmPtXJIbUFX1pQvdaGH_FOGNFxS9KeQR5voK5FhsfA90ipyjar_Y5eEi_l-tozvzj68wvp4K_GstM6Nsh6PbJJxEDKVPPljfQNzI0Rf</recordid><startdate>20150109</startdate><enddate>20150109</enddate><creator>Herr, Jonathan D</creator><creator>Talbot, Justin</creator><creator>Steele, Ryan P</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150109</creationdate><title>Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u</title><author>Herr, Jonathan D ; Talbot, Justin ; Steele, Ryan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17620594923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Clusters</topic><topic>Contact</topic><topic>Coupling (molecular)</topic><topic>Energy use</topic><topic>Ionization</topic><topic>Progressions</topic><topic>Radicals</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herr, Jonathan D</creatorcontrib><creatorcontrib>Talbot, Justin</creatorcontrib><creatorcontrib>Steele, Ryan P</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herr, Jonathan D</au><au>Talbot, Justin</au><au>Steele, Ryan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><date>2015-01-09</date><risdate>2015</risdate><volume>119</volume><issue>4</issue><spage>752</spage><epage>766</epage><pages>752-766</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-cluster theory approaches. In small clusters, an ion-radical contact pair OH...H sub(3)O super(+) is known to form upon ionization. The transition from n = 4 to n = 5 molecules in the cluster, however, is found to demarcate a size regime in which a propensity for the ion and radical to separate exists. This trend is consistent with recent experimental vibrational analyses. Decomposition of the cluster energetics reveals that preferential solvation of the hydronium cation by water serves as the dominant driving force for this pair separation, which should persist in larger clusters and bulk water ionization.</abstract><doi>10.1021/jp509698y</doi></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2015-01, Vol.119 (4), p.752-766
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1762059492
source American Chemical Society Journals
subjects Clusters
Contact
Coupling (molecular)
Energy use
Ionization
Progressions
Radicals
Solvation
title Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Progression%20in%20Clusters%20of%20Ionized%20Water,%20(H%20sub(2)O)%20sub()n1-5u&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Herr,%20Jonathan%20D&rft.date=2015-01-09&rft.volume=119&rft.issue=4&rft.spage=752&rft.epage=766&rft.pages=752-766&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp509698y&rft_dat=%3Cproquest%3E1762059492%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762059492&rft_id=info:pmid/&rfr_iscdi=true