Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u
Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2015-01, Vol.119 (4), p.752-766 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 766 |
---|---|
container_issue | 4 |
container_start_page | 752 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 119 |
creator | Herr, Jonathan D Talbot, Justin Steele, Ryan P |
description | Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-cluster theory approaches. In small clusters, an ion-radical contact pair OH...H sub(3)O super(+) is known to form upon ionization. The transition from n = 4 to n = 5 molecules in the cluster, however, is found to demarcate a size regime in which a propensity for the ion and radical to separate exists. This trend is consistent with recent experimental vibrational analyses. Decomposition of the cluster energetics reveals that preferential solvation of the hydronium cation by water serves as the dominant driving force for this pair separation, which should persist in larger clusters and bulk water ionization. |
doi_str_mv | 10.1021/jp509698y |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762059492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762059492</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17620594923</originalsourceid><addsrcrecordid>eNqVir0KwjAYAIMoWH8G3yBjC1a_pE01syiKg4KCo1RNpSUmmq8Z9OkV8QWc7jiOkAGDEQPOxtVdgMzk9NkgARMcYsGZaH4cpjIWWSLbpINYAQBLeBqQ9a52_lx7l2u6dfbqFGJpDS0NnWmPtXJIbUFX1pQvdaGH_FOGNFxS9KeQR5voK5FhsfA90ipyjar_Y5eEi_l-tozvzj68wvp4K_GstM6Nsh6PbJJxEDKVPPljfQNzI0Rf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762059492</pqid></control><display><type>article</type><title>Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u</title><source>American Chemical Society Journals</source><creator>Herr, Jonathan D ; Talbot, Justin ; Steele, Ryan P</creator><creatorcontrib>Herr, Jonathan D ; Talbot, Justin ; Steele, Ryan P</creatorcontrib><description>Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-cluster theory approaches. In small clusters, an ion-radical contact pair OH...H sub(3)O super(+) is known to form upon ionization. The transition from n = 4 to n = 5 molecules in the cluster, however, is found to demarcate a size regime in which a propensity for the ion and radical to separate exists. This trend is consistent with recent experimental vibrational analyses. Decomposition of the cluster energetics reveals that preferential solvation of the hydronium cation by water serves as the dominant driving force for this pair separation, which should persist in larger clusters and bulk water ionization.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp509698y</identifier><language>eng</language><subject>Clusters ; Contact ; Coupling (molecular) ; Energy use ; Ionization ; Progressions ; Radicals ; Solvation</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2015-01, Vol.119 (4), p.752-766</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Herr, Jonathan D</creatorcontrib><creatorcontrib>Talbot, Justin</creatorcontrib><creatorcontrib>Steele, Ryan P</creatorcontrib><title>Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><description>Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-cluster theory approaches. In small clusters, an ion-radical contact pair OH...H sub(3)O super(+) is known to form upon ionization. The transition from n = 4 to n = 5 molecules in the cluster, however, is found to demarcate a size regime in which a propensity for the ion and radical to separate exists. This trend is consistent with recent experimental vibrational analyses. Decomposition of the cluster energetics reveals that preferential solvation of the hydronium cation by water serves as the dominant driving force for this pair separation, which should persist in larger clusters and bulk water ionization.</description><subject>Clusters</subject><subject>Contact</subject><subject>Coupling (molecular)</subject><subject>Energy use</subject><subject>Ionization</subject><subject>Progressions</subject><subject>Radicals</subject><subject>Solvation</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVir0KwjAYAIMoWH8G3yBjC1a_pE01syiKg4KCo1RNpSUmmq8Z9OkV8QWc7jiOkAGDEQPOxtVdgMzk9NkgARMcYsGZaH4cpjIWWSLbpINYAQBLeBqQ9a52_lx7l2u6dfbqFGJpDS0NnWmPtXJIbUFX1pQvdaGH_FOGNFxS9KeQR5voK5FhsfA90ipyjar_Y5eEi_l-tozvzj68wvp4K_GstM6Nsh6PbJJxEDKVPPljfQNzI0Rf</recordid><startdate>20150109</startdate><enddate>20150109</enddate><creator>Herr, Jonathan D</creator><creator>Talbot, Justin</creator><creator>Steele, Ryan P</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150109</creationdate><title>Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u</title><author>Herr, Jonathan D ; Talbot, Justin ; Steele, Ryan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17620594923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Clusters</topic><topic>Contact</topic><topic>Coupling (molecular)</topic><topic>Energy use</topic><topic>Ionization</topic><topic>Progressions</topic><topic>Radicals</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herr, Jonathan D</creatorcontrib><creatorcontrib>Talbot, Justin</creatorcontrib><creatorcontrib>Steele, Ryan P</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herr, Jonathan D</au><au>Talbot, Justin</au><au>Steele, Ryan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><date>2015-01-09</date><risdate>2015</risdate><volume>119</volume><issue>4</issue><spage>752</spage><epage>766</epage><pages>752-766</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-cluster theory approaches. In small clusters, an ion-radical contact pair OH...H sub(3)O super(+) is known to form upon ionization. The transition from n = 4 to n = 5 molecules in the cluster, however, is found to demarcate a size regime in which a propensity for the ion and radical to separate exists. This trend is consistent with recent experimental vibrational analyses. Decomposition of the cluster energetics reveals that preferential solvation of the hydronium cation by water serves as the dominant driving force for this pair separation, which should persist in larger clusters and bulk water ionization.</abstract><doi>10.1021/jp509698y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2015-01, Vol.119 (4), p.752-766 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762059492 |
source | American Chemical Society Journals |
subjects | Clusters Contact Coupling (molecular) Energy use Ionization Progressions Radicals Solvation |
title | Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Progression%20in%20Clusters%20of%20Ionized%20Water,%20(H%20sub(2)O)%20sub()n1-5u&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Herr,%20Jonathan%20D&rft.date=2015-01-09&rft.volume=119&rft.issue=4&rft.spage=752&rft.epage=766&rft.pages=752-766&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp509698y&rft_dat=%3Cproquest%3E1762059492%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762059492&rft_id=info:pmid/&rfr_iscdi=true |