Structural Progression in Clusters of Ionized Water, (H sub(2)O) sub()n1-5u

Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2015-01, Vol.119 (4), p.752-766
Hauptverfasser: Herr, Jonathan D, Talbot, Justin, Steele, Ryan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ionized water clusters serve as a model of water-splitting chemistry for energetic purposes, as well as postradiolytic events in condensed-phase systems. Structures, properties, and relative energies are presented for oxidized water clusters, (H sub(2)O) sub()n1-5u+ using equation-of-motion coupled-cluster theory approaches. In small clusters, an ion-radical contact pair OH...H sub(3)O super(+) is known to form upon ionization. The transition from n = 4 to n = 5 molecules in the cluster, however, is found to demarcate a size regime in which a propensity for the ion and radical to separate exists. This trend is consistent with recent experimental vibrational analyses. Decomposition of the cluster energetics reveals that preferential solvation of the hydronium cation by water serves as the dominant driving force for this pair separation, which should persist in larger clusters and bulk water ionization.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp509698y