Photoelectron Spectroscopic and Computational Study of Hydrated Pyrimidine Anions
The stabilization of the pyrimidine anion by the addition of water molecules is studied experimentally using photoelectron spectroscopy of mass-selected hydrated pyrimidine clusters and computationally using quantum-mechanical electronic structure theory. Although the pyrimidine molecular anion is n...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-12, Vol.118 (51), p.11901-11907 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The stabilization of the pyrimidine anion by the addition of water molecules is studied experimentally using photoelectron spectroscopy of mass-selected hydrated pyrimidine clusters and computationally using quantum-mechanical electronic structure theory. Although the pyrimidine molecular anion is not observed experimentally, the addition of a single water molecule is sufficient to impart a positive electron affinity. The sequential hydration data have been used to extrapolate to −0.22 eV for the electron affinity of neutral pyrimidine, which agrees very well with previous observations. These results for pyrimidine are consistent with previous studies of the hydrated cluster anions of uridine, cytidine, thymine, adenine, uracil, and naphthalene. This commonality suggests a universal effect of sequential hydration on the electron affinity of similar molecules. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp504724v |