Molecular Mechanism of Myoglobin Autoxidation: Insights from Computer Simulations

Myoglobin (Mb) and hemoglobin have the biological ability to carry/store oxygen (O2), a property which requires its heme iron atom to be in the ferrous -Fe(II)- state. However, the thermodynamically stable state in the presence of O2 is Fe(III) and thus the oxidation rate of a globin is a critical p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2015-02, Vol.119 (5), p.1802-1813
Hauptverfasser: Arcon, J. P, Rosi, P, Petruk, A. A, Marti, M. A, Estrin, D. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Myoglobin (Mb) and hemoglobin have the biological ability to carry/store oxygen (O2), a property which requires its heme iron atom to be in the ferrous -Fe(II)- state. However, the thermodynamically stable state in the presence of O2 is Fe(III) and thus the oxidation rate of a globin is a critical parameter related to its function. Mb has been extensively studied and many mutants have been characterized regarding its oxygen mediated oxidation (i.e., autoxidation) rates. Site directed mutants in residues 29 (B10), which shapes the distal cavity, and 64 (E7), the well-known histidine gate, have been shown to display a wide range of autoxidation rate constants. In this work, we have thoroughly studied the mechanism underlying the autoxidation process by means of state-of-the-art computer simulation methodologies, using Mb and site directed mutants as benchmark cases. Our results explain the observed autoxidation rate tendencies in different variants of Mb, L29F < wt < L29A = H64Q < H64F < H64A, and shed light on several aspects of the reaction at the atomic level. First, water access to the distal pocket is a key event and the observed acid catalysis relies on HisE7 protonation and opening of the His gate to allow water access, rather than protonation of the oxy heme itself. Our results also suggest that the basic mechanism, i.e., superoxide displacement by hydroxide anion, is energetically more feasible. Finally, we confirmed that distal hydrogen bonds protect the oxy complex from autoxidation.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp5093948