Enhanced Pseudocapacitance of Ionic Liquid/Cobalt Hydroxide Nanohybrids

Development of nanostructured materials with enhanced redox reaction capabilities is important for achieving high energy and power densities in energy storage systems. Here, we demonstrate that the nanohybridization of ionic liquids (ILs, 1-butyl-3-methylimidazolium tetrafluoroborate) and cobalt hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2013-03, Vol.7 (3), p.2453-2460
Hauptverfasser: Choi, Bong Gill, Yang, MinHo, Jung, Sung Chul, Lee, Kyoung G, Kim, Jin-Gyu, Park, HoSeok, Park, Tae Jung, Lee, Sang Bok, Han, Young-Kyu, Huh, Yun Suk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of nanostructured materials with enhanced redox reaction capabilities is important for achieving high energy and power densities in energy storage systems. Here, we demonstrate that the nanohybridization of ionic liquids (ILs, 1-butyl-3-methylimidazolium tetrafluoroborate) and cobalt hydroxide (Co(OH)2) through ionothermal synthesis leads to a rapid and reversible redox reaction. The as-synthesized IL-Co(OH)2 has a favorable, tailored morphology with a large surface area of 400.4 m2/g and a mesopore size of 4.8 nm. In particular, the IL-Co(OH)2-based electrode exhibits improvement in electrochemical characteristics compared with bare Co(OH)2, showing a high specific capacitance of 859 F/g at 1 A/g, high-rate capability (∼95% retention at 30 A/g), and excellent cycling performance (∼96% retention over 1000 cycles). AC impedance analysis demonstrates that the introduction of ILs on Co(OH)2 facilitates ion transport and charge transfer: IL-Co(OH)2 shows a higher ion diffusion coefficient (1.06 × 10–11 cm2/s) and lower charge transfer resistance (1.53 Ω) than those of bare Co(OH)2 (2.55 × 10–12 cm2/s and 2.59 Ω). Our density functional theory (DFT) calculations reveal that the IL molecules, consisting of anion and cation groups, enable easier hydrogen desorption/adsorption process, that is, a more favorable redox reaction on the Co(OH)2 surface.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn305750s