Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma

Cancer immunotherapy is mainly focused on manipulating patient’s own immune system to recognize and destroy cancer cells. Vaccine formulations based on nanotechnology have been developed to target delivery antigens to antigen presenting cells (APCs), especially dendritic cells (DCs) for efficiently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-07, Vol.9 (7), p.6918-6933
Hauptverfasser: Guo, Yuanyuan, Wang, Dong, Song, Qingle, Wu, Tingting, Zhuang, Xiangting, Bao, Yuling, Kong, Miao, Qi, Yan, Tan, Songwei, Zhang, Zhiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cancer immunotherapy is mainly focused on manipulating patient’s own immune system to recognize and destroy cancer cells. Vaccine formulations based on nanotechnology have been developed to target delivery antigens to antigen presenting cells (APCs), especially dendritic cells (DCs) for efficiently induction of antigen–specific T cells response. To enhance DC targeting and antigen presenting efficiency, we developed erythrocyte membrane-enveloped poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles for antigenic peptide (hgp10025–33) and toll-like receptor 4 agonist, monophosphoryl lipid (MPLA). A Mannose-inserted membrane structure was constructed to actively target APCs in the lymphatic organ, and redox-sensitive peptide-conjugated PLGA nanoparticles were fabricated which prone to cleave in the intracellular milieu. The nanovaccine demonstrated the retained protein content in erythrocyte and enhanced in vitro cell uptake. An antigen-depot effect was observed in the administration site with promoted retention in draining lymph nodes. Compared with other formulations after intradermal injection, the nanovaccine prolonged tumor-occurring time, inhibited tumor growth, and suppressed tumor metastasis in prophylactic, therapeutic, and metastatic melanoma models, respectively. Additionally, we revealed that nanovaccine effectively enhanced IFN-γ secretion and CD8+ T cell response. Taken together, these results demonstrated the great potential in applying an erythrocyte membrane-enveloped polymeric nanoplatform for an antigen delivery system in cancer immunotherapy.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b01042