Large-Area, Transparent, and Flexible Infrared Photodetector Fabricated Using P‑N Junctions Formed by N‑Doping Chemical Vapor Deposition Grown Graphene

Graphene is a highly promising material for high speed, broadband, and multicolor photodetection. Because of its lack of bandgap, individually gated P- and N-regions are needed to fabricate photodetectors. Here we report a technique for making a large-area photodetector on the basis of controllable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-07, Vol.14 (7), p.3702-3708
Hauptverfasser: Liu, Nan, Tian, He, Schwartz, Gregor, Tok, Jeffrey B.-H, Ren, Tian-Ling, Bao, Zhenan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene is a highly promising material for high speed, broadband, and multicolor photodetection. Because of its lack of bandgap, individually gated P- and N-regions are needed to fabricate photodetectors. Here we report a technique for making a large-area photodetector on the basis of controllable fabrication of graphene P-N junctions. Our selectively doped chemical vapor deposition (CVD) graphene photodetector showed a ∼5% modulation of conductance under global IR irradiation. By comparing devices of various geometries, we identify that both the homogeneous and the P-N junction regions contribute competitively to the photoresponse. Furthermore, we demonstrate that our two-terminal graphene photodetector can be fabricated on both transparent and flexible substrates without the need for complex fabrication processes used in electrically gated three-terminal devices. This represents the first demonstration of a fully transparent and flexible graphene-based IR photodetector that exhibits both good photoresponsivity and high bending capability. This simple approach should facilitate the development of next generation high-performance IR photodetectors.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl500443j