Computational Study on the Vinyl Azide Decomposition

The decomposition mechanism of vinyl azide (CH2CHN3) has been studied by calculations of the electronic structure. In addition, a study based on the topology of the electron charge density distribution and its Laplacian function, within the Quantum Theory of Atoms in Molecules (QTAIM), has been carr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-07, Vol.118 (27), p.5038-5045
Hauptverfasser: Duarte, Darío J. R, Miranda, Margarida S, Esteves da Silva, Joaquim C. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The decomposition mechanism of vinyl azide (CH2CHN3) has been studied by calculations of the electronic structure. In addition, a study based on the topology of the electron charge density distribution and its Laplacian function, within the Quantum Theory of Atoms in Molecules (QTAIM), has been carried out with the aim of comprehending the electron redistribution mechanisms that take place in the formation of vinyl nitrenes. The electronic structure calculations reveal that the decomposition of the s-cis conformer of vinyl azide leads to the formation of ketenimine through a single-step conversion, s-cis-CH2CHN3 → CH2CNH + N2, while the conversion of the s-trans conformer to acetonitrile occurs in two steps, s-trans-CH2CHN3 → cyc-CH2NCH + N2 → CH3CN + N2. The topological analysis of the L(r) function reveals that triplet vinyl nitrene has one lone pair on the valence shell charge concentration (VSCC) of nitrogen and thus could act as a monodentate Lewis base, while singlet vinyl nitrene has two lone pairs on the VSCC of nitrogen and thus could act as a bidentate Lewis base.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp500140j