Billion-Fold Increase in Tip-Enhanced Raman Signal
A billion-fold increase in the Raman signal over conventional tip-enhanced Raman spectroscopy/microscopy (TERS) is reported. It is achieved by introducing a stimulating beam confocal with the pump beam into a conventional TERS setup. A stimulated TERS spectrum, closely corresponding to its spontaneo...
Gespeichert in:
Veröffentlicht in: | ACS nano 2014-04, Vol.8 (4), p.3421-3426 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A billion-fold increase in the Raman signal over conventional tip-enhanced Raman spectroscopy/microscopy (TERS) is reported. It is achieved by introducing a stimulating beam confocal with the pump beam into a conventional TERS setup. A stimulated TERS spectrum, closely corresponding to its spontaneous TERS counterpart, is obtained by plotting the signal intensity of the strongest Raman peak of an azobenzene thiol self-assembled monolayer versus the stimulating laser frequency. The stimulated TERS image of azobenzene thiol molecules grafted onto Au ⟨111⟩ clearly shows the surface distribution of the molecules, whereas, when compared to the simultaneously recorded surface topography, it presents an image contrast of different nature. The experimentally obtained stimulated gain is estimated at 1.0 × 109, which is in reasonable agreement with the theoretically predicted value. In addition to the signal increase, the signal-to-noise ratio was 3 orders of magnitude higher than in conventional spontaneous TERS. The proposed stimulated TERS technique offers the possibility for a substantially faster imaging of the surface with respect to normal TERS. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/nn406263m |