Solvent-Induced Red-Shifts for the Proton Stretch Vibrational Frequency in a Hydrogen-Bonded Complex. 1. A Valence Bond-Based Theoretical Approach

A theory is presented for the proton stretch vibrational frequency νAH for hydrogen (H−) bonded complexes of the acid dissociation type, that is, AH···B ⇔ A–···HB+(but without complete proton transfer), in both polar and nonpolar solvents, with special attention given to the variation of νAH with th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2014-07, Vol.118 (28), p.8330-8351
Hauptverfasser: Kiefer, Philip M, Pines, Ehud, Pines, Dina, Hynes, James T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theory is presented for the proton stretch vibrational frequency νAH for hydrogen (H−) bonded complexes of the acid dissociation type, that is, AH···B ⇔ A–···HB+(but without complete proton transfer), in both polar and nonpolar solvents, with special attention given to the variation of νAH with the solvent’s dielectric constant ε. The theory involves a valence bond (VB) model for the complex’s electronic structure, quantization of the complex’s proton and H-bond motions, and a solvent coordinate accounting for nonequilibrium solvation. A general prediction is that νAH decreases with increasing ε largely due to increased solvent stabilization of the ionic VB structure A–···HB+ relative to the neutral VB structure AH···B. Theoretical νAH versus 1/ε slope expressions are derived; these differ for polar and nonpolar solvents and allow analysis of the solvent dependence of νAH. The theory predicts that both polar and nonpolar slopes are determined by (i) a structure factor reflecting the complex’s size/geometry, (ii) the complex’s dipole moment in the ground vibrational state, and (iii) the dipole moment change in the transition, which especially reflects charge transfer and the solution phase proton potential shapes. The experimental proton frequency solvent dependence for several OH···O H-bonded complexes is successfully accounted for and analyzed with the theory.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp501815j