One-Pot Assembly of a Hetero-dimeric DNA Origami from Chip-Derived Staples and Double-Stranded Scaffold
Although structural DNA nanotechnology, and especially scaffolded DNA origami, hold great promise for bottom-up fabrication of novel nanoscale materials and devices, concerns about scalability have tempered widespread enthusiasm. Here we report a single-pot reaction where both strands of double-stra...
Gespeichert in:
Veröffentlicht in: | ACS nano 2013-02, Vol.7 (2), p.903-910 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although structural DNA nanotechnology, and especially scaffolded DNA origami, hold great promise for bottom-up fabrication of novel nanoscale materials and devices, concerns about scalability have tempered widespread enthusiasm. Here we report a single-pot reaction where both strands of double-stranded M13-bacteriophage DNA are simultaneously folded into two distinct shapes that then heterodimerize with high yield. The fully addressable, two-dimensional heterodimer DNA origami, with twice the surface area of standard M13 origami, formed in high yield (81% of the well-formed monomers undergo dimerization). We also report the concurrent production of entire sets of staple strands by a unique, nicking strand-displacement amplification (nSDA) involving reusable surface-bound template strands that were synthesized in situ using a custom piezoelectric inkjet system. The combination of chip-based staple strand production, double-sized origami, and high-yield one-pot assembly markedly increases the useful scale of DNA origami. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/nn302322j |