Three-Dimensional Observation of the Conductive Filament in Nanoscaled Resistive Memory Devices

The basic unit of information in filamentary-based resistive switching memories is physically stored in a conductive filament. Therefore, the overall performance of the device is indissolubly related to the properties of such filament. In this Letter, we report for the first time on the three-dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-05, Vol.14 (5), p.2401-2406
Hauptverfasser: Celano, Umberto, Goux, Ludovic, Belmonte, Attilio, Opsomer, Karl, Franquet, Alexis, Schulze, Andreas, Detavernier, Christophe, Richard, Olivier, Bender, Hugo, Jurczak, Malgorzata, Vandervorst, Wilfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The basic unit of information in filamentary-based resistive switching memories is physically stored in a conductive filament. Therefore, the overall performance of the device is indissolubly related to the properties of such filament. In this Letter, we report for the first time on the three-dimensional (3D) observation of the shape of the conductive filament. The observation of the filament is done in a nanoscale conductive-bridging device, which is programmed under real operative conditions. To obtain the 3D-information we developed a dedicated tomography technique based on conductive atomic force microscopy. The shape and size of the conductive filament are obtained in three-dimensions with nanometric resolution. The observed filament presents a conical shape with the narrow part close to the inert-electrode. On the basis of this shape, we conclude that the dynamic filament-growth is limited by the cation transport. In addition, we demonstrate the role of the programming current, which clearly influences the physical-volume of the induced conductive filaments.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl500049g