Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy

Atomically thin molybdenum disulfide (MoS2) offers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayer MoS2 in the range of 100–320 K are reported and analyzed. The linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-01, Vol.8 (1), p.986-993
Hauptverfasser: Yan, Rusen, Simpson, Jeffrey R, Bertolazzi, Simone, Brivio, Jacopo, Watson, Michael, Wu, Xufei, Kis, Andras, Luo, Tengfei, Hight Walker, Angela R, Xing, Huili Grace
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 993
container_issue 1
container_start_page 986
container_title ACS nano
container_volume 8
creator Yan, Rusen
Simpson, Jeffrey R
Bertolazzi, Simone
Brivio, Jacopo
Watson, Michael
Wu, Xufei
Kis, Andras
Luo, Tengfei
Hight Walker, Angela R
Xing, Huili Grace
description Atomically thin molybdenum disulfide (MoS2) offers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayer MoS2 in the range of 100–320 K are reported and analyzed. The linear temperature coefficients of the in-plane E 2g 1 and the out-of-plane A 1g modes for both suspended and substrate-supported monolayer MoS2 are measured. These data, when combined with the first-order coefficients from laser power-dependent studies, enable the thermal conductivity to be extracted. The resulting thermal conductivity κ = (34.5 ± 4) W/mK at room temperature agrees well with the first-principles lattice dynamics simulations. However, this value is significantly lower than that of graphene. The results from this work provide important input for the design of MoS2-based devices where thermal management is critical.
doi_str_mv 10.1021/nn405826k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762051232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492722618</sourcerecordid><originalsourceid>FETCH-LOGICAL-a449t-281ec353d0bdbf601f176203d906ce81076b0b0a2a517d08b6f2f333e0508ebd3</originalsourceid><addsrcrecordid>eNqFkU1P3TAQRa0KVL666B9A3iDBIjC2EydZVo8WkEBI5SF1F9nxWA3EdmonSPn3DX30rZBYzV0cHWnuJeQrg3MGnF14n0NRcfn8ieyzWsgMKvlrZ5sLtkcOUnoCKMqqlJ_JHs9FWfK62Cdu_RujUz1dBW-mduxeunGmwdK74EOvZoxL6mdt0E-OXnZp6m1nkN7rUXUeDbUxOLpGN2BU4xQxu8QB_YKP9KdyytOHAdsxhtSGYT4iu1b1Cb-83UPy-OP7enWd3d5f3ay-3WYqz-sx4xXDVhTCgDbaSmCWlZKDMDXIFisGpdSgQXFVsNJApaXlVgiBUECF2ohDcrrxDjH8mTCNjetSi32vPIYpNf90BeOCf4zmNS85l6xa0LMN2i7vpIi2GWLnVJwbBs3rEM12iIU9ftNO2qHZkv-bX4CTDaDa1DyFKfqlkHdEfwESVpBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492722618</pqid></control><display><type>article</type><title>Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy</title><source>ACS Publications</source><creator>Yan, Rusen ; Simpson, Jeffrey R ; Bertolazzi, Simone ; Brivio, Jacopo ; Watson, Michael ; Wu, Xufei ; Kis, Andras ; Luo, Tengfei ; Hight Walker, Angela R ; Xing, Huili Grace</creator><creatorcontrib>Yan, Rusen ; Simpson, Jeffrey R ; Bertolazzi, Simone ; Brivio, Jacopo ; Watson, Michael ; Wu, Xufei ; Kis, Andras ; Luo, Tengfei ; Hight Walker, Angela R ; Xing, Huili Grace</creatorcontrib><description>Atomically thin molybdenum disulfide (MoS2) offers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayer MoS2 in the range of 100–320 K are reported and analyzed. The linear temperature coefficients of the in-plane E 2g 1 and the out-of-plane A 1g modes for both suspended and substrate-supported monolayer MoS2 are measured. These data, when combined with the first-order coefficients from laser power-dependent studies, enable the thermal conductivity to be extracted. The resulting thermal conductivity κ = (34.5 ± 4) W/mK at room temperature agrees well with the first-principles lattice dynamics simulations. However, this value is significantly lower than that of graphene. The results from this work provide important input for the design of MoS2-based devices where thermal management is critical.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn405826k</identifier><identifier>PMID: 24377295</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Devices ; Electronics ; Graphene ; Heat transfer ; Molybdenum disulfide ; Monolayers ; Nanostructure ; Thermal conductivity ; Thermal management</subject><ispartof>ACS nano, 2014-01, Vol.8 (1), p.986-993</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a449t-281ec353d0bdbf601f176203d906ce81076b0b0a2a517d08b6f2f333e0508ebd3</citedby><cites>FETCH-LOGICAL-a449t-281ec353d0bdbf601f176203d906ce81076b0b0a2a517d08b6f2f333e0508ebd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn405826k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn405826k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24377295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Rusen</creatorcontrib><creatorcontrib>Simpson, Jeffrey R</creatorcontrib><creatorcontrib>Bertolazzi, Simone</creatorcontrib><creatorcontrib>Brivio, Jacopo</creatorcontrib><creatorcontrib>Watson, Michael</creatorcontrib><creatorcontrib>Wu, Xufei</creatorcontrib><creatorcontrib>Kis, Andras</creatorcontrib><creatorcontrib>Luo, Tengfei</creatorcontrib><creatorcontrib>Hight Walker, Angela R</creatorcontrib><creatorcontrib>Xing, Huili Grace</creatorcontrib><title>Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Atomically thin molybdenum disulfide (MoS2) offers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayer MoS2 in the range of 100–320 K are reported and analyzed. The linear temperature coefficients of the in-plane E 2g 1 and the out-of-plane A 1g modes for both suspended and substrate-supported monolayer MoS2 are measured. These data, when combined with the first-order coefficients from laser power-dependent studies, enable the thermal conductivity to be extracted. The resulting thermal conductivity κ = (34.5 ± 4) W/mK at room temperature agrees well with the first-principles lattice dynamics simulations. However, this value is significantly lower than that of graphene. The results from this work provide important input for the design of MoS2-based devices where thermal management is critical.</description><subject>Devices</subject><subject>Electronics</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Nanostructure</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3TAQRa0KVL666B9A3iDBIjC2EydZVo8WkEBI5SF1F9nxWA3EdmonSPn3DX30rZBYzV0cHWnuJeQrg3MGnF14n0NRcfn8ieyzWsgMKvlrZ5sLtkcOUnoCKMqqlJ_JHs9FWfK62Cdu_RujUz1dBW-mduxeunGmwdK74EOvZoxL6mdt0E-OXnZp6m1nkN7rUXUeDbUxOLpGN2BU4xQxu8QB_YKP9KdyytOHAdsxhtSGYT4iu1b1Cb-83UPy-OP7enWd3d5f3ay-3WYqz-sx4xXDVhTCgDbaSmCWlZKDMDXIFisGpdSgQXFVsNJApaXlVgiBUECF2ohDcrrxDjH8mTCNjetSi32vPIYpNf90BeOCf4zmNS85l6xa0LMN2i7vpIi2GWLnVJwbBs3rEM12iIU9ftNO2qHZkv-bX4CTDaDa1DyFKfqlkHdEfwESVpBU</recordid><startdate>20140128</startdate><enddate>20140128</enddate><creator>Yan, Rusen</creator><creator>Simpson, Jeffrey R</creator><creator>Bertolazzi, Simone</creator><creator>Brivio, Jacopo</creator><creator>Watson, Michael</creator><creator>Wu, Xufei</creator><creator>Kis, Andras</creator><creator>Luo, Tengfei</creator><creator>Hight Walker, Angela R</creator><creator>Xing, Huili Grace</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140128</creationdate><title>Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy</title><author>Yan, Rusen ; Simpson, Jeffrey R ; Bertolazzi, Simone ; Brivio, Jacopo ; Watson, Michael ; Wu, Xufei ; Kis, Andras ; Luo, Tengfei ; Hight Walker, Angela R ; Xing, Huili Grace</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a449t-281ec353d0bdbf601f176203d906ce81076b0b0a2a517d08b6f2f333e0508ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Devices</topic><topic>Electronics</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Nanostructure</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Rusen</creatorcontrib><creatorcontrib>Simpson, Jeffrey R</creatorcontrib><creatorcontrib>Bertolazzi, Simone</creatorcontrib><creatorcontrib>Brivio, Jacopo</creatorcontrib><creatorcontrib>Watson, Michael</creatorcontrib><creatorcontrib>Wu, Xufei</creatorcontrib><creatorcontrib>Kis, Andras</creatorcontrib><creatorcontrib>Luo, Tengfei</creatorcontrib><creatorcontrib>Hight Walker, Angela R</creatorcontrib><creatorcontrib>Xing, Huili Grace</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Rusen</au><au>Simpson, Jeffrey R</au><au>Bertolazzi, Simone</au><au>Brivio, Jacopo</au><au>Watson, Michael</au><au>Wu, Xufei</au><au>Kis, Andras</au><au>Luo, Tengfei</au><au>Hight Walker, Angela R</au><au>Xing, Huili Grace</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-01-28</date><risdate>2014</risdate><volume>8</volume><issue>1</issue><spage>986</spage><epage>993</epage><pages>986-993</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Atomically thin molybdenum disulfide (MoS2) offers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayer MoS2 in the range of 100–320 K are reported and analyzed. The linear temperature coefficients of the in-plane E 2g 1 and the out-of-plane A 1g modes for both suspended and substrate-supported monolayer MoS2 are measured. These data, when combined with the first-order coefficients from laser power-dependent studies, enable the thermal conductivity to be extracted. The resulting thermal conductivity κ = (34.5 ± 4) W/mK at room temperature agrees well with the first-principles lattice dynamics simulations. However, this value is significantly lower than that of graphene. The results from this work provide important input for the design of MoS2-based devices where thermal management is critical.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24377295</pmid><doi>10.1021/nn405826k</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2014-01, Vol.8 (1), p.986-993
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762051232
source ACS Publications
subjects Devices
Electronics
Graphene
Heat transfer
Molybdenum disulfide
Monolayers
Nanostructure
Thermal conductivity
Thermal management
title Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20of%20Monolayer%20Molybdenum%20Disulfide%20Obtained%20from%20Temperature-Dependent%20Raman%20Spectroscopy&rft.jtitle=ACS%20nano&rft.au=Yan,%20Rusen&rft.date=2014-01-28&rft.volume=8&rft.issue=1&rft.spage=986&rft.epage=993&rft.pages=986-993&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn405826k&rft_dat=%3Cproquest_cross%3E1492722618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492722618&rft_id=info:pmid/24377295&rfr_iscdi=true