Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy

Atomically thin molybdenum disulfide (MoS2) offers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayer MoS2 in the range of 100–320 K are reported and analyzed. The linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-01, Vol.8 (1), p.986-993
Hauptverfasser: Yan, Rusen, Simpson, Jeffrey R, Bertolazzi, Simone, Brivio, Jacopo, Watson, Michael, Wu, Xufei, Kis, Andras, Luo, Tengfei, Hight Walker, Angela R, Xing, Huili Grace
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomically thin molybdenum disulfide (MoS2) offers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayer MoS2 in the range of 100–320 K are reported and analyzed. The linear temperature coefficients of the in-plane E 2g 1 and the out-of-plane A 1g modes for both suspended and substrate-supported monolayer MoS2 are measured. These data, when combined with the first-order coefficients from laser power-dependent studies, enable the thermal conductivity to be extracted. The resulting thermal conductivity κ = (34.5 ± 4) W/mK at room temperature agrees well with the first-principles lattice dynamics simulations. However, this value is significantly lower than that of graphene. The results from this work provide important input for the design of MoS2-based devices where thermal management is critical.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn405826k