Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction

Non-Pt noble metal clusters like Au clusters are believed to be promising high performance catalysts for the oxygen reduction reaction (ORR) at the cathode of fuel cells, but they still suffer big problems during the catalysis reactions, such as a large amount of the capping agents being on the surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2012-09, Vol.6 (9), p.8288-8297
Hauptverfasser: Yin, Huajie, Tang, Hongjie, Wang, Dan, Gao, Yan, Tang, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-Pt noble metal clusters like Au clusters are believed to be promising high performance catalysts for the oxygen reduction reaction (ORR) at the cathode of fuel cells, but they still suffer big problems during the catalysis reactions, such as a large amount of the capping agents being on the surface and easy occurrence of dissolution and aggregation. To overcome these obstacles, here, we present a novel and general strategy to grow ultrafine Au clusters and other metal (Pt, Pd) clusters on the reduced graphene oxide (rGO) sheets without any additional protecting molecule or reductant. Compared with the currently generally adopted nanocatalysts, including commercial Pt/C, rGO sheets, Au nanoparticle/rGO hybrids, and thiol-capped Au clusters of the same sizes, the as-synthesized Au cluster/rGO hybrids display an impressive eletrocatalytic performance toward ORR, for instance, high onset potential, superior methanol tolerance, and excellent stability.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn302984x