Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode

In this paper, we employed Ramen spectroscopy to monitor oxygen movement at the electrode/oxide interface by inserting single-layer graphene (SLG). Raman area mapping and single-point measurements show noticeable changes in the D-band, G-band, and 2D-band signals of the SLG during consecutive electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2013-02, Vol.13 (2), p.651-657
Hauptverfasser: Tian, He, Chen, Hong-Yu, Gao, Bin, Yu, Shimeng, Liang, Jiale, Yang, Yi, Xie, Dan, Kang, Jinfeng, Ren, Tian-Ling, Zhang, Yuegang, Wong, H.-S. Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue 2
container_start_page 651
container_title Nano letters
container_volume 13
creator Tian, He
Chen, Hong-Yu
Gao, Bin
Yu, Shimeng
Liang, Jiale
Yang, Yi
Xie, Dan
Kang, Jinfeng
Ren, Tian-Ling
Zhang, Yuegang
Wong, H.-S. Philip
description In this paper, we employed Ramen spectroscopy to monitor oxygen movement at the electrode/oxide interface by inserting single-layer graphene (SLG). Raman area mapping and single-point measurements show noticeable changes in the D-band, G-band, and 2D-band signals of the SLG during consecutive electrical programming repeated for nine cycles. In addition, the inserted SLG enables the reduction of RESET current by 22 times and programming power consumption by 47 times. Collectively, our results show that monitoring the oxygen movement by Raman spectroscopy for a resistive random access memory (RRAM) is made possible by inserting a single-layer graphene at electrode/oxide interface. This may open up an important analysis tool for investigation of switching mechanism of RRAM.
doi_str_mv 10.1021/nl304246d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762050480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762050480</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-7867e5f80a32e13195e38a32be747d06f2230ebca325ff889ef3cba3e0e9a253</originalsourceid><addsrcrecordid>eNqFkUFP3TAQhC1EVSj0wB9AviC1h5S1HcfOESFKkXhCAu6R46whKLGDnUDz7xvK6ysHJE472v00K80QcsDgBwPOjn0nIOd50WyRXSYFZEVZ8u2N1vkO-ZLSAwCUQsJnssMFV1pJsUumVfDtGGLr7-jV7_kOPV2FJ-zRj7Se6bXpjac3A9oxhmTDMNPg6DWmNo3tEy5334SenliLKdEV9iHO9Lkd76mh59EM9-gxu_AJ44gNPev--jS4Tz450yX8up575Pbn2e3pr-zy6vzi9OQyM0LpMVO6UCidBiM4MsFKiUIvukaVqwYKx7kArO2yks5pXaITtjYCAUvDpdgj315thxgeJ0xj1bfJYtcZj2FKFVMFBwm5ho9RrpXWhdAvrt9fUbtEkiK6aohtb-JcMahe-qg2fSzs4dp2qntsNuS_AhbgaA2YZE3novG2Tf85xXKZwxvO2FQ9hCn6Jbd3Hv4BjlSe8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1287886385</pqid></control><display><type>article</type><title>Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Tian, He ; Chen, Hong-Yu ; Gao, Bin ; Yu, Shimeng ; Liang, Jiale ; Yang, Yi ; Xie, Dan ; Kang, Jinfeng ; Ren, Tian-Ling ; Zhang, Yuegang ; Wong, H.-S. Philip</creator><creatorcontrib>Tian, He ; Chen, Hong-Yu ; Gao, Bin ; Yu, Shimeng ; Liang, Jiale ; Yang, Yi ; Xie, Dan ; Kang, Jinfeng ; Ren, Tian-Ling ; Zhang, Yuegang ; Wong, H.-S. Philip</creatorcontrib><description>In this paper, we employed Ramen spectroscopy to monitor oxygen movement at the electrode/oxide interface by inserting single-layer graphene (SLG). Raman area mapping and single-point measurements show noticeable changes in the D-band, G-band, and 2D-band signals of the SLG during consecutive electrical programming repeated for nine cycles. In addition, the inserted SLG enables the reduction of RESET current by 22 times and programming power consumption by 47 times. Collectively, our results show that monitoring the oxygen movement by Raman spectroscopy for a resistive random access memory (RRAM) is made possible by inserting a single-layer graphene at electrode/oxide interface. This may open up an important analysis tool for investigation of switching mechanism of RRAM.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl304246d</identifier><identifier>PMID: 23278753</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Electric Impedance ; Electrodes ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Graphite - chemistry ; Lasers ; Materials science ; Monitoring ; Monitors ; Nanotechnology ; Oxides ; Oxides - chemistry ; Oxygen - chemistry ; Physics ; Programming ; Raman spectroscopy ; Random access memory ; Specific materials ; Spectrum Analysis, Raman</subject><ispartof>Nano letters, 2013-02, Vol.13 (2), p.651-657</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-7867e5f80a32e13195e38a32be747d06f2230ebca325ff889ef3cba3e0e9a253</citedby><cites>FETCH-LOGICAL-a378t-7867e5f80a32e13195e38a32be747d06f2230ebca325ff889ef3cba3e0e9a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl304246d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl304246d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27145403$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23278753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, He</creatorcontrib><creatorcontrib>Chen, Hong-Yu</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Yu, Shimeng</creatorcontrib><creatorcontrib>Liang, Jiale</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Xie, Dan</creatorcontrib><creatorcontrib>Kang, Jinfeng</creatorcontrib><creatorcontrib>Ren, Tian-Ling</creatorcontrib><creatorcontrib>Zhang, Yuegang</creatorcontrib><creatorcontrib>Wong, H.-S. Philip</creatorcontrib><title>Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>In this paper, we employed Ramen spectroscopy to monitor oxygen movement at the electrode/oxide interface by inserting single-layer graphene (SLG). Raman area mapping and single-point measurements show noticeable changes in the D-band, G-band, and 2D-band signals of the SLG during consecutive electrical programming repeated for nine cycles. In addition, the inserted SLG enables the reduction of RESET current by 22 times and programming power consumption by 47 times. Collectively, our results show that monitoring the oxygen movement by Raman spectroscopy for a resistive random access memory (RRAM) is made possible by inserting a single-layer graphene at electrode/oxide interface. This may open up an important analysis tool for investigation of switching mechanism of RRAM.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric Impedance</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>Nanotechnology</subject><subject>Oxides</subject><subject>Oxides - chemistry</subject><subject>Oxygen - chemistry</subject><subject>Physics</subject><subject>Programming</subject><subject>Raman spectroscopy</subject><subject>Random access memory</subject><subject>Specific materials</subject><subject>Spectrum Analysis, Raman</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3TAQhC1EVSj0wB9AviC1h5S1HcfOESFKkXhCAu6R46whKLGDnUDz7xvK6ysHJE472v00K80QcsDgBwPOjn0nIOd50WyRXSYFZEVZ8u2N1vkO-ZLSAwCUQsJnssMFV1pJsUumVfDtGGLr7-jV7_kOPV2FJ-zRj7Se6bXpjac3A9oxhmTDMNPg6DWmNo3tEy5334SenliLKdEV9iHO9Lkd76mh59EM9-gxu_AJ44gNPev--jS4Tz450yX8up575Pbn2e3pr-zy6vzi9OQyM0LpMVO6UCidBiM4MsFKiUIvukaVqwYKx7kArO2yks5pXaITtjYCAUvDpdgj315thxgeJ0xj1bfJYtcZj2FKFVMFBwm5ho9RrpXWhdAvrt9fUbtEkiK6aohtb-JcMahe-qg2fSzs4dp2qntsNuS_AhbgaA2YZE3novG2Tf85xXKZwxvO2FQ9hCn6Jbd3Hv4BjlSe8A</recordid><startdate>20130213</startdate><enddate>20130213</enddate><creator>Tian, He</creator><creator>Chen, Hong-Yu</creator><creator>Gao, Bin</creator><creator>Yu, Shimeng</creator><creator>Liang, Jiale</creator><creator>Yang, Yi</creator><creator>Xie, Dan</creator><creator>Kang, Jinfeng</creator><creator>Ren, Tian-Ling</creator><creator>Zhang, Yuegang</creator><creator>Wong, H.-S. Philip</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130213</creationdate><title>Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode</title><author>Tian, He ; Chen, Hong-Yu ; Gao, Bin ; Yu, Shimeng ; Liang, Jiale ; Yang, Yi ; Xie, Dan ; Kang, Jinfeng ; Ren, Tian-Ling ; Zhang, Yuegang ; Wong, H.-S. Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-7867e5f80a32e13195e38a32be747d06f2230ebca325ff889ef3cba3e0e9a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric Impedance</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>Nanotechnology</topic><topic>Oxides</topic><topic>Oxides - chemistry</topic><topic>Oxygen - chemistry</topic><topic>Physics</topic><topic>Programming</topic><topic>Raman spectroscopy</topic><topic>Random access memory</topic><topic>Specific materials</topic><topic>Spectrum Analysis, Raman</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, He</creatorcontrib><creatorcontrib>Chen, Hong-Yu</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Yu, Shimeng</creatorcontrib><creatorcontrib>Liang, Jiale</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Xie, Dan</creatorcontrib><creatorcontrib>Kang, Jinfeng</creatorcontrib><creatorcontrib>Ren, Tian-Ling</creatorcontrib><creatorcontrib>Zhang, Yuegang</creatorcontrib><creatorcontrib>Wong, H.-S. Philip</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, He</au><au>Chen, Hong-Yu</au><au>Gao, Bin</au><au>Yu, Shimeng</au><au>Liang, Jiale</au><au>Yang, Yi</au><au>Xie, Dan</au><au>Kang, Jinfeng</au><au>Ren, Tian-Ling</au><au>Zhang, Yuegang</au><au>Wong, H.-S. Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013-02-13</date><risdate>2013</risdate><volume>13</volume><issue>2</issue><spage>651</spage><epage>657</epage><pages>651-657</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>In this paper, we employed Ramen spectroscopy to monitor oxygen movement at the electrode/oxide interface by inserting single-layer graphene (SLG). Raman area mapping and single-point measurements show noticeable changes in the D-band, G-band, and 2D-band signals of the SLG during consecutive electrical programming repeated for nine cycles. In addition, the inserted SLG enables the reduction of RESET current by 22 times and programming power consumption by 47 times. Collectively, our results show that monitoring the oxygen movement by Raman spectroscopy for a resistive random access memory (RRAM) is made possible by inserting a single-layer graphene at electrode/oxide interface. This may open up an important analysis tool for investigation of switching mechanism of RRAM.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23278753</pmid><doi>10.1021/nl304246d</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2013-02, Vol.13 (2), p.651-657
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762050480
source MEDLINE; American Chemical Society Journals
subjects Cross-disciplinary physics: materials science
rheology
Electric Impedance
Electrodes
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Graphene
Graphite - chemistry
Lasers
Materials science
Monitoring
Monitors
Nanotechnology
Oxides
Oxides - chemistry
Oxygen - chemistry
Physics
Programming
Raman spectroscopy
Random access memory
Specific materials
Spectrum Analysis, Raman
title Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Oxygen%20Movement%20by%20Raman%20Spectroscopy%20of%20Resistive%20Random%20Access%20Memory%20with%20a%20Graphene-Inserted%20Electrode&rft.jtitle=Nano%20letters&rft.au=Tian,%20He&rft.date=2013-02-13&rft.volume=13&rft.issue=2&rft.spage=651&rft.epage=657&rft.pages=651-657&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl304246d&rft_dat=%3Cproquest_cross%3E1762050480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1287886385&rft_id=info:pmid/23278753&rfr_iscdi=true