Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode

In this paper, we employed Ramen spectroscopy to monitor oxygen movement at the electrode/oxide interface by inserting single-layer graphene (SLG). Raman area mapping and single-point measurements show noticeable changes in the D-band, G-band, and 2D-band signals of the SLG during consecutive electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2013-02, Vol.13 (2), p.651-657
Hauptverfasser: Tian, He, Chen, Hong-Yu, Gao, Bin, Yu, Shimeng, Liang, Jiale, Yang, Yi, Xie, Dan, Kang, Jinfeng, Ren, Tian-Ling, Zhang, Yuegang, Wong, H.-S. Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we employed Ramen spectroscopy to monitor oxygen movement at the electrode/oxide interface by inserting single-layer graphene (SLG). Raman area mapping and single-point measurements show noticeable changes in the D-band, G-band, and 2D-band signals of the SLG during consecutive electrical programming repeated for nine cycles. In addition, the inserted SLG enables the reduction of RESET current by 22 times and programming power consumption by 47 times. Collectively, our results show that monitoring the oxygen movement by Raman spectroscopy for a resistive random access memory (RRAM) is made possible by inserting a single-layer graphene at electrode/oxide interface. This may open up an important analysis tool for investigation of switching mechanism of RRAM.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl304246d