Laser-Induced Cell Detachment, Patterning, and Regrowth on Gold Nanoparticle Functionalized Surfaces
We report on the selective cell detachment from nanoengineered gold nanoparticle (AuNP) surfaces triggered by laser irradiation, which occurs in a nonthermal manner. The gold nanoparticle-based surfaces reveal good adhesion of NIH3T3 fibroblast cells. Patterning is achieved by lithographic microcont...
Gespeichert in:
Veröffentlicht in: | ACS nano 2012-11, Vol.6 (11), p.9585-9595 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on the selective cell detachment from nanoengineered gold nanoparticle (AuNP) surfaces triggered by laser irradiation, which occurs in a nonthermal manner. The gold nanoparticle-based surfaces reveal good adhesion of NIH3T3 fibroblast cells. Patterning is achieved by lithographic microcontact printing, selective gold nanoparticle deposition, and by laser beam profiling. It is shown that the effectiveness of fibroblast cell detachment depends on the cell age, laser power, and AuNP patterning profile. Heat distribution and temperature rise around gold nanoparticle functionalized surfaces is modeled, revealing low heating of nanoparticles by laser illumination. The nonthermal photochemical mechanism of cell detachment due to production of reactive oxygen species under illumination of gold nanoparticles by green laser light is studied. We also demonstrate that cells migrate from unirradiated areas leading to their reattachment and surface recovery which is important for controlled spatial organization of cells in wound healing and tissue engineering. Research presented in this work is targeted at designing biointerfaces for cell cultures. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/nn302891u |