Light Trapping in Solar Cells: Can Periodic Beat Random?

Theory predicts that periodic photonic nanostructures should outperform their random counterparts in trapping light in solar cells. However, the current certified world-record conversion efficiency for amorphous silicon thin-film solar cells, which strongly rely on light trapping, was achieved on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2012-03, Vol.6 (3), p.2790-2797
Hauptverfasser: Battaglia, Corsin, Hsu, Ching-Mei, Söderström, Karin, Escarré, Jordi, Haug, Franz-Josef, Charrière, Mathieu, Boccard, Mathieu, Despeisse, Matthieu, Alexander, Duncan T. L, Cantoni, Marco, Cui, Yi, Ballif, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Theory predicts that periodic photonic nanostructures should outperform their random counterparts in trapping light in solar cells. However, the current certified world-record conversion efficiency for amorphous silicon thin-film solar cells, which strongly rely on light trapping, was achieved on the random pyramidal morphology of transparent zinc oxide electrodes. Based on insights from waveguide theory, we develop tailored periodic arrays of nanocavities on glass fabricated by nanosphere lithography, which enable a cell with a remarkable short-circuit current density of 17.1 mA/cm2 and a high initial efficiency of 10.9%. A direct comparison with a cell deposited on the random pyramidal morphology of state-of-the-art zinc oxide electrodes, replicated onto glass using nanoimprint lithography, demonstrates unambiguously that periodic structures rival random textures.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn300287j