Flexible Multilevel Resistive Memory with Controlled Charge Trap B- and N-Doped Carbon Nanotubes

B- and N-doped carbon nanotubes (CNTs) with controlled workfunctions were successfully employed as charge trap materials for solution processable, mechanically flexible, multilevel switching resistive memory. B- and N-doping systematically controlled the charge trap level and dispersibility of CNTs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2012-05, Vol.12 (5), p.2217-2221
Hauptverfasser: Hwang, Sun Kak, Lee, Ju Min, Kim, Seungjun, Park, Ji Sun, Park, Hyung Il, Ahn, Chi Won, Lee, Keon Jae, Lee, Takhee, Kim, Sang Ouk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:B- and N-doped carbon nanotubes (CNTs) with controlled workfunctions were successfully employed as charge trap materials for solution processable, mechanically flexible, multilevel switching resistive memory. B- and N-doping systematically controlled the charge trap level and dispersibility of CNTs in polystyrene matrix. Consequently, doped CNT device demonstrated greatly enhanced nonvolatile memory performance (ON–OFF ratio >102, endurance cycle >102, retention time >105) compared to undoped CNT device. More significantly, the device employing both B- and N-doped CNTs with different charge trap levels exhibited multilevel resistive switching with a discrete and stable intermediate state. Charge trapping materials with different energy levels offer a novel design scheme for solution processable multilevel memory.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl204039q