Biomechanical and Computed Tomography Analysis of Adjustable Femoral Cortical Fixation Devices for Anterior Cruciate Ligament Reconstruction in a Cadaveric Human Knee Model
Purpose To evaluate and compare two adjustable femoral cortical suspensory fixation devices used for anterior cruciate ligament reconstruction through a novel, direct computed tomography (CT) analysis metric and biomechanical laxity testing in a matched cadaveric human knee study. Methods Anterior c...
Gespeichert in:
Veröffentlicht in: | Arthroscopy 2016-02, Vol.32 (2), p.253-261 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose To evaluate and compare two adjustable femoral cortical suspensory fixation devices used for anterior cruciate ligament reconstruction through a novel, direct computed tomography (CT) analysis metric and biomechanical laxity testing in a matched cadaveric human knee study. Methods Anterior cruciate ligament reconstructions with bovine tendon grafts were performed using two adjustable femoral cortical suspensory fixation devices (RigidLoop Adjustable [DePuy Synthes Mitek, Raynham, MA] and TightRope [Arthrex, Naples, FL]) in 12 knees (6 matched pairs). A mechanical testing series was used to determine each knee's laxity in the intact condition. After reconstruction, each specimen was again tested for laxity and also imaged with CT. The laxity testing and CT imaging were then repeated after 1,000 cycles of anteroposterior loading on each knee to compare changes in laxity for the two fixation devices and to visualize changes in button-to-graft distance migration through a three-dimensional CT imaging method. Results No significant differences were found between the two fixation groups' laxity measures after reconstruction (all P values ≥ .620) or after cycling (all P values ≥ .211) at any flexion angle. In addition, no significant differences were found between the two groups regarding button-to-graft distance migration ( P = .773; mean, 0.61 ± 0.6 mm [95% confidence interval, −0.1 to 1.3 mm] in RigidLoop Adjustable group and 0.53 ± 0.6 mm [95% confidence interval, −0.1 to 1.2 mm] in TightRope group). Conclusions There were no significant differences between the two femoral cortical suspensory adjustable-loop devices regarding laxity outcomes or loop displacement as measured by button-to-graft distance migration. Clinical Relevance Use of either of the adjustable-loop cortical suspensory devices in our analysis would appear to produce similar, acceptable laxity outcomes and minimal effects in terms of device-related loop displacement. |
---|---|
ISSN: | 0749-8063 1526-3231 |
DOI: | 10.1016/j.arthro.2015.11.034 |