A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in d-galactose-induced aging mice

Twelve isolates isolated from the gastrointestinal tracts of Gaotian villagers in China, who had a lifespan of 92 yr, were examined for their antioxidants using free radical scavenging activity and 2,2-diphenyl-1-picrylhydrazyl. Three strains (i.e., Lactobacillus mucosae LMU1001, and Lactobacillus p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2016-02, Vol.99 (2), p.903-914
Hauptverfasser: Yu, Xiaomin, Li, Shengjie, Yang, Dong, Qiu, Liang, Wu, Yaoping, Wang, Dengyuan, Shah, Nagendra P., Xu, Feng, Wei, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Twelve isolates isolated from the gastrointestinal tracts of Gaotian villagers in China, who had a lifespan of 92 yr, were examined for their antioxidants using free radical scavenging activity and 2,2-diphenyl-1-picrylhydrazyl. Three strains (i.e., Lactobacillus mucosae LMU1001, and Lactobacillus plantarum LPL0902 and LPL0302) were selected as candidates to prepare yogurt for testing their antioxidants in a model of d-galactose-induced aging mice, with vitamin C as a positive control. The results showed that L. mucosae LMU1001 was the best strain, which had similar in vivo antioxidant activity as vitamin C. A significant increase was found in the activities of glutathione peroxidase in serum and total superoxide dismutase in the liver, and a decrease in the level of malondialdehyde in serum. Regarding mRNA expression level detected quantitatively by real-time PCR, we observed that L. mucosae LMU1001 significantly upregulated antioxidant genes (i.e., MT1A and MT1M in HT-29 and Caco-2) and those genes (i.e., MT1, MT2, GPx1, and GPx2) in the intestinal tract of the model mice. Hence, this strain could be considered as a potential probiotic lactic acid bacterium for improving antioxidant levels in functional foods.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2015-10265