Multistimuli-Regulated Photochemothermal Cancer Therapy Remotely Controlled via Fe5C2 Nanoparticles
Stimuli-controlled drug delivery and release is of great significance in cancer therapy, making a stimuli-responsive drug carrier highly demanded. Herein, a multistimuli-controlled drug carrier was developed by coating bovine serum albumin on Fe5C2 nanoparticles (NPs). With a high loading of the ant...
Gespeichert in:
Veröffentlicht in: | ACS nano 2016-01, Vol.10 (1), p.159-169 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stimuli-controlled drug delivery and release is of great significance in cancer therapy, making a stimuli-responsive drug carrier highly demanded. Herein, a multistimuli-controlled drug carrier was developed by coating bovine serum albumin on Fe5C2 nanoparticles (NPs). With a high loading of the anticancer drug doxorubicin, the nanoplatform provides a burst drug release when exposed to near-infrared (NIR) light or acidic conditions. In vitro experiment demonstrated a NIR-regulated cell inhibition that is ascribed from cellular uptake of the carrier and the combination of photothermal therapy and enhanced drug release. The carrier is also magnetic-field-responsive, which enables targeted drug delivery under the guidance of a magnetic field and monitors the theranostic effect by magnetic resonance imaging. In vivo synergistic effect demonstrates that the magnetic-driven accumulation of NPs can induce a complete tumor inhibition without appreciable side effects to the treated mice by NIR irradiation, due to the combined photochemotherapy. Our results highlight the great potential of Fe5C2 NPs as a remote-controlled platform for photochemothermal cancer therapy. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.5b04706 |