The anti-angiogenic herbal extract from Melissa officinalis inhibits adipogenesis in 3T3-L1 adipocytes and suppresses adipocyte hypertrophy in high fat diet-induced obese C57BL/6J mice
Melissa officinalis L. (Labiatae; lemon balm) has been used traditionally and contemporarily as an anti-stress herb. Current hypotheses suggest that not only chronic stress promotes angiogenesis, but angiogenesis also modulates adipogenesis and obesity. Because the herbal extract ALS-L1023 from M. o...
Gespeichert in:
Veröffentlicht in: | Journal of ethnopharmacology 2016-02, Vol.178, p.238-250 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Melissa officinalis L. (Labiatae; lemon balm) has been used traditionally and contemporarily as an anti-stress herb. Current hypotheses suggest that not only chronic stress promotes angiogenesis, but angiogenesis also modulates adipogenesis and obesity. Because the herbal extract ALS-L1023 from M. officinalis L. (Labiatae; lemon balm) has an anti-angiogenic activity, we hypothesized that ALS-L1023 could inhibit adipogenesis and adipocyte hypertrophy.
ALS-L1023 was prepared by a two-step organic solvent fractionation from M. officinalis. The effects of ALS-L1023 on adipogenesis in 3T3-L1 adipocytes and adipocyte hypertrophy in high fat diet (HFD)-fed obese mice were measured using in vivo and in vitro approaches.
ALS-L1023 inhibited angiogenesis in a dose-dependent manner in the HUVEC tube formation assay in vitro. Treatment of cells with ALS-L1023 inhibited lipid accumulation and adipocyte-specific gene expression caused by troglitazone or MDI differentiation mix. ALS-L1023 reduced mRNA expression of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9) in differentiated cells. In contrast, mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) increased. Protease activity, as measured by zymography, showed that activity of MMP-2 and MMP-9 decreased in ALS-L1023-treated cells. ALS-L1023 also inhibited MMP-2 and MMP-9 reporter gene expression in the presence of the MMP inducer phorbol 12-myristate 13-acetate. An in vivo study showed that ALS-L1023 not only decreased adipose tissue mass and adipocyte size, but also reduced mRNA levels of adipose tissue angiogenic factors and MMPs in HFD-fed obese mice.
These results suggest that the anti-angiogenic herbal extract ALS-L1023 suppresses adipogenesis and adipocyte hypertrophy, and this effect may be mediated by inhibiting angiogenesis and MMP activities. Thus, by curbing adipogenesis, anti-angiogenic ALS-L1023 yields a possible therapeutic choice for the prevention and treatment of human obesity and its associated conditions.
[Display omitted] |
---|---|
ISSN: | 0378-8741 1872-7573 |
DOI: | 10.1016/j.jep.2015.12.015 |